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Abstract

In structural dynamics, a predictive model is constructed by developing a mathematical-mechanical
model of a designed system in order to predict the response of the real system which is the manufactured
system realized from the designed system. The mathematical-mechanical modelling process of the designed
system introduces two fundamental types of uncertainties: the data uncertainties and the model
uncertainties. Uncertainties have to be taken into account for improving the predictability of the model.
Model uncertainties cannot be modelled by using the usual parametric probabilistic approach. Recently, a
general non-parametric probabilistic approach of model uncertainties for dynamical systems has been
proposed using the random matrix theory. This paper gives a comprehensive overview of this approach in
developing its foundations in simple terms and in illustrating all the concepts and the tools introduced in
the general theory, by using a simple example. This paper deals with (1) notions of designed systems, real
systems, mean models as predictive models, errors and uncertainties; (2) the definition of a simple example
in linear elastodynamics; (3) a comprehensive overview of the non-parametric probabilistic approach of
model uncertainties for predictive models in structural dynamics; (4) a summary of the random matrix
ensembles which are necessary for the non-parametric modelling of random uncertainties; (5) the
estimation of the dispersion parameters of the non-parametric probabilistic model using experimental data;
(6) the method to solve the stochastic equation of the dynamical system with non-parametric probabilistic
model of random uncertainties; (7) a numerical simulation and the validation for the simple example.
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1. Introduction

In structural dynamics, a predictive model is constructed by developing a mathematical-me-
chanical model of a designed system in order to predict the response of the real system which is the
manufactured system realized from the designed system. The mathematical-mechanical modelling
process of the designed system introduces two fundamental types of uncertainties: the data
uncertainties and the model uncertainties. Uncertainties have to be taken into account for
improving the predictability of the model.

Data uncertainties concern the parameters of the mathematical-mechanical model such as the
geometrical parameters, the boundary conditions, the elasticity tensor of the constitutive
equation, etc. The best approach to take into account data uncertainties is the parametric
probabilistic approach which consists in modelling the parameters of the model by random
quantities such as vector-valued random variables or stochastic fields. In this context, general
methods for computational stochastic mechanics can be found in Ref. [1]. The most important
computational stochastic tool for random continuous media and for continuous stochastic
systems is the stochastic finite element method introduced in Refs. [2,3], whose general
developments can be found in Refs. [4-7] and for which non-gaussian aspects are introduced in
Refs. [8.9]. The parametric probabilistic approach can be used in low-frequency dynamics, in
particular for random eigenvalue problems of large random systems [10,11], and also in medium-
frequency dynamics [12,13].

Model uncertainties cannot be modelled by using the parametric probabilistic approach.
Recently, a general non-parametric probabilistic approach of model uncertainties for dynamical
systems has been proposed using the random matrix theory. The objective of this paper is to give a
comprehensive overview of this approach in developing its foundations in simple terms and in
illustrating all the concepts and the tools introduced in the general theory, by using a simple
example. Such an approach has been introduced in the context of model uncertainties for linear
dynamical systems. The bases of this theory can be found in Refs. [14,15]. Some complements
concerning the random eigenvalue problems are given in Ref. [16]. The case of non-homogeneous
model uncertainties in complex dynamical systems has been studied in Ref. [17], the case of
uncertain dynamical systems in the medium-frequency range is presented in Ref. [18] and the case
of the dynamic response of mistuned bladed disks is analysed in Ref. [19]. For transient dynamics
and for frequency dynamics of dynamical systems with model uncertainties, numerical validations
can be found in Refs. [16,20], respectively, and experimental validations can be found in
Refs. [21,22], respectively. An extension of this non-parametric probabilistic approach of model
uncertainties for nonlinear dynamical systems is introduced in Ref. [23] and an application to
transient nonlinear dynamics of uncertain dynamical systems with elastic stops can be found in
Ref. [24]. Finally, Ref. [25] introduces (1) two additional sets of random matrices useful for fluid-
structure interaction problems in the field of elastoacoustics and (2) a methodology for
performing the experimental identification of the non-parametric probabilistic approach.

Section 2 deals with notions of designed systems, real systems, mean models as predictive
models, errors and uncertainties. In Section 3, a simple example is defined in linear elastodynamics
and allows the notions introduced in Section 2 to be illustrated. Section 4 is devoted to a
comprehensive overview of the non-parametric probabilistic approach of model uncertainties for
predictive models in structural dynamics. The foundations and concepts are presented in simple
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terms by using the simple example defined in Section 3. Section 5 deals with a summary of the
random matrix ensembles which are necessary for the non-parametric modelling of random
uncertainties. Section 6 is devoted to the estimation of the dispersion parameters of the non-
parametric probabilistic model. The method to solve the stochastic equation of the dynamical
system with the non-parametric probabilistic model of random uncertainties is presented in
Section 7. Finally, in Section 8, one presents a numerical simulation and a validation of the theory
for the simple example presented in Sections 3 and 4.

1.1. Comments concerning notation used

In this paper, the following notations are used:

(1) A lower case letter is a real or complex deterministic variable (e.g. f).

(2) A boldface lower case letter is a real or complex deterministic vector (e.g. f=(f,...,f,)-
(3) An upper case letter is a real or complex random variable (e.g. F).
(4) A boldface upper case letter is a real or complex random vector (e.g. F = (Fy,..., Fy)).

(5) An upper case letter between brackets is a real or complex deterministic matrix (e.g. [A4]).

(6) A boldface upper case letter between brackets is a real or complex random matrix (e.g. [A]).

(7) Any deterministic quantities above (e.g. f,f,[4]) with an underline (e.g. f,f,[4]) means that
these deterministic quantities are related to the mean model (or to the nominal model).

(8) The overline means the conjugate of a complex variable.

2. Errors and uncertainties in a predictive model of a real system

In this section, one introduces the design system, the real system, the mean model as a predictive
model and the notion of errors and uncertainties related to the mean model.

2.1. The designed system

In the context of engineering mechanics, the designed system is the mechanical system
conceived by the designers and analysts. A designed system is defined by geometrical parameters,
by the choice of materials and many other parameters. A designed system can be a very simple
mechanical system such as an elastic bar or a very complex system such as an aircraft.

2.2. The real system

The real system is the manufactured system realised from the designed system. Consequently,
the real system is a man-made-physical system which is never exactly known (for instance, the
geometry does not exactly coincide with the geometry of the designed system). The real system has
then to be considered as an uncertain system with respect to the designed system. Uncertainties do
not only affect the geometry, but also the boundary conditions, the materials, the mass density
distribution, etc.
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(A) Complex real system: Generally, for a complex real system (such an aircraft for instance),
only one manufactured system can be considered as available to perform experiments in order to
reduce the level of uncertainties that exist in the real system with respect to the designed system. It
should be noted that, even if such experiments can be performed, a complex real system is always
under observable which means that only a few information can be deduced from experiments for
reducing the level of uncertainties with respect to the knowledge of the designed system.

(B) Simple real system: Sometimes, for a simple real system, several manufactured systems
F(0y),...,%(0,) can be obtained from the same designed system. Then, if the number v of real
systems is sufficiently high, then the mathematical statistics [26] can be used for estimating a
probabilistic model of the real system in order to characterize the uncertainties with respect to the
designed system. In such a case, %(0)),...,%(0,) have to be considered as v independent
realizations of a unique unknown random system .. Nevertheless, the real system is always under
observation and consequently, the probabilistic model of any parameters cannot be correctly
estimated. This means that the uncertainties of the real system with respect to the knowledge of
the designed system cannot be completely suppressed.

(C) Simple or complex real system: It can be concluded that, for a simple or a complex real system,
the statistical estimation of random system % has to be considered as not realistic and therefore, the
real system has to be considered as an uncertain system with respect to the designed system.

2.3. The mean model as a predictive model: Errors and uncertainties

The objective of the predictive model is to predict the output v¢*P of the real system for a given
input f**P. For instance, the predictive model will be developed to predict the static displacement
field of a static system subjected to a given external static load or, will be developed to predict the
transient displacement field of a dynamical system subjected to an external impulsive load induced
by a shock. Such a predictive model is constructed by developing a mathematical-mechanical
model of the designed system for a given input (see Fig. 1). Consequently, the mean model has an
input f modelling f*?, an output v modelling v**P and exhibits a parameter s for which data have
to be given (it should be noted that the parameter can be a real number, a real vector, a real
function, a field, a vector-valued function, etc.).

(A) Errors: The errors are related to the construction of an approximate output v" of output v of
the mean model for a given input f and for a given parameter s. For instance, if the mean model is

Designed
system
Manufacturing M athematical —mechanical
process modelling process
. Real S}LStem oo Mean model
f asthe L — v f asthe
manufactured - predictive model v
system of the real system
Uncertain system /I\

S

Fig. 1. Designed system, real system and mean model as the predictive model of the real system.
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a boundary value problem (BVP) defined on a bounded domain, the use of the finite element
method [27] for constructing a n-dimensional space approximation of the BVP solution, introduces an
error ||v—v"| related to the finite element mesh size, where | - || is an appropriate norm. If a
dynamical problem is studied, the use of a time integration scheme introduces an additional error
related to the time sampling and to the time step. Errors have to be reduced and controlled using
adapted methods developed in applied mathematics and in numerical analysis [28].

(B) Uncertainties: Below, input f and parameter s related to the mean model will be called the
data of the mean model. The mathematical-mechanical modelling process of the designed system
introduces two fundamental types of uncertainties: the data uncertainties and the model
uncertainties.

(B.1) Data uncertainties: Input f of the mean model does not exactly represent input f*P of the
real system and, there are uncertainties on parameter s of the mean model. For instance, a static
load represented by a point force is an approximation of the reality; the use of a given value of the
Young modulus for a given elastic material is not an exact value (which is unknown), but
corresponds to an uncertain value; the elastic constants of a complex joint between two
substructures are uncertain, etc. Data uncertainties have to be taken into account for improving
the predictability of the mean model. The best approach to take into account data uncertainties is
the parametric probabilistic approach consisting in modelling the data of the mean model by
random quantities (see Section 1).

(B.2) Model uncertainties: The mathematical-mechanical modelling process used for
constructing the mean model induces model uncertainties with respect to the designed system.
This type of uncertainties is mainly due to the introduction of simplifications in order to decrease
the complexity of the mean model which is constructed. For instance, a slender cylindrical elastic
medium will be modelled using the beam theory (such as an Euler or a Timoshenko beam), a thick
rectangular plate elastic medium will be modelled by using the thick plate theory (such as the
Midlin plate theory), a complex joint constituted of an assemblage of several plates attached
together by lines of bolts will be modelled by an equivalent homogeneous orthotropic plate, etc. It
is clear that the introduction of such simplified models yields a mean model whose variations of
parameter s do not allow the model uncertainties to be reduced. Model uncertainties have to be
taken into account for improving the predictability of the mean model. As explained above, the
parametric probabilistic approach cannot be used (this point will be revisited in Section 4). This is
the reason why a non-parametric probabilistic approach is proposed.

(C) Predictability of the mean model: The error between the prediction v” calculated with the
mean model and the response v¥*P of the real system can be measured by [|[v**P — v"||. Clearly, the
mean model can be considered as a predictive model if this error is sufficiently small. In general,
due to data uncertainties and model uncertainties, this error is not sufficiently small and has to be
reduced in modelling data uncertainties and model uncertainties.

3. Defining a simple example in linear elastodynamics

In order to simply explain the main ideas of the non-parametric probabilistic approach of
model uncertainties for predictive models, a very simple example is introduced in the field of linear
elastodynamics.
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3.1. The designed system

The designed system is a slender cylindrical elastic medium £ defined in a cartesian coordinate
system (Oxyz) (see Fig. 2). The cylinder has a rectangular section whose height and width are #,
and /5, respectively. The length is 4, such that h, <h; and h; <h,. One then has

Q= {(x,y,z), x €]0,h[, ye] —%% [,z e} —%% [} (1)

The elastic medium is made of a composite material. This structure is simply supported as shown
in Fig. 2. The other parts of the boundary 0 Q of domain Q are free.

3.2. The real system

Fig. 3 shows the real system corresponding to the designed system defined in Fig. 2. There are
uncertainties on the geometry due to the manufacturing tolerances. The domain of the real system
1s Qrs which differs from Q. The simply supported conditions are not exactly realized and the
composite material does not exactly correspond to the given specifications of the designed system.
This real system is excited by a frequency-dependent pressure field p®*P(w) which is constant in

Fig. 2. Simple example of a designed system: linear elastodynamics of a slender 3D elastic medium.

y

Pressure field =
applied on surface rR

Uncertain geometry due to
manufacturing tolerances
S

Z Manufactured composite material
differing from the designed composite material
Uncertain boundary conditions

with respect to the designed system

Fig. 3. Simple example of a real system: manufactured system from the designed system defined in Fig. 2.
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space on the part I'rg of the boundary 0Qgs such that

h
FRS = {(xayaz)a X e]xo — &, X0 + 6[) Y= _723 Z E] — &, +8[} (2)
Let B be the frequency band of analysis defined by
B =10, Wmax], 0<®max < + 00. 3)

We are interested in the dynamics of the real system in frequency band B, induced by pressure
field excitation p®*P(w) applied on I'rs and in particular, in observing the component
v**P(x, y, z; w) of the displacement field (1P, v**P, w*™*P) on the line defined by {(x,0,0),x € [0, A,]}.

3.3. The mean model as a predictive model

The mean model, as the predictive model of the real system defined in Fig. 3, is constructed
from the designed system defined in Fig. 2. This mean model is constituted of a damped
homogeneous Euler elastic beam with length 4, simply supported at x = 0 and 4, (see Fig. 4).
Assuming that 2¢/h; <1, pressure field p**P(w) on I'rs is modelled by a point force (0, g(w),0)
located at xg, such that B

g(w) = — /r PPP(w)ds = —46’p™P(w), o € B. 4)

Therefore, the mean model input f modelling f*? is the force field (0, g(w)do(x — xp),0). For w in
B, this external force induces flexural vibrations in the plane (Oxy) for which the transversal
displacement (following Oy) is noted v(x, w). Consequently, for all w fixed in B, the mean model is
defined by the following BVP consisting in finding {v(x, w),x €]0,A,[}, such that

0% u(x, ) k 3" u(x, w)
Ox?2 = ox4

—wzgé, v(x, ) —iw2 &\ /p, k = g(w)do(x — xp), x €]0,M], (5)

2 2
00, ) = ol ) = SEEO TG0, ©

Tg (@) V(%W

Fig. 4. Simple example of a mean model: predictive model of the real system resulting from the designed system defined
in Fig. 2.
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in which k = y; is the mean flexural stiffness modulus, j = @@3 /12 is the mean inertia moment of
the beam section around axis Oz, y is the mean Young modulus, p,=p h,hy is the mean mass
density by unit of length, p is the mean mass density, i = +~/—1, { is the mean critical damping rate.

3.4. Frequency response approximation constructed using the mean reduced model
For all w fixed in B, the approximation v"*(x, w) of frequency response v(x, w) of the mean model

can then be constructed by using the following mean reduced model deduced from the usual
modal analysis:

V(o)=Y g (@u(x), x€l0,h], @)
a=1
in which ¢"(w) = (gl(w), cee, gn(w)) is the complex vector of the generalized coordinates which is
the unique solution of the complex matrix equation,
(—’[M,] +i0[D,] + [K,])q"(®) = {'(®), o€ B. 8)

In Eq. (8), generalized mass, damping and stiffness matrices [M,], [D,] and [K,] of the mean
model are diagonal (n x n) real matrices, such that

[M, 15 = p,0ups (Dl =2Ep,0,0up  [Kylig = p,w3dup ©)

with 0., = 1 and 6,5 = 0 if # 8, and where 0 <w; < - - - <w,, are the eigenfrequencies of the mean

system such that
2 2
w, = :<ﬂ> , o(=1,2,...,l’l. (10)
P, ﬁl

These eigenfrequencies are associated with the eigenmodes v,(x), ...,v,(x) defined by

[2
v,(x) = h—sin(%x), a=1,2,...,n (11)
n ny

with the orthogonality properties fé‘” 0,(X)vp(x) dx = d4p. Finally, f"(w) is the complex vector of
the generalized forces, such that f'(w) = (f 1(co), conf n(a))) in which

]:1((0) = g(w),(x0), o=1,2,...,n (12)

3.5. Errors related to the use of a mean reduced model

As explained in Section 2.3 (A), the mean model error is due to the use of the approximation
v"(x,w) of v(x,w) for predicting v**P(x,w) and can be measured by estimating the following
norm:

1/2

hl
||y—y"||={/ B/O‘ |y<x,w>—y"(x,w>|2dxdw} . (13)
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+00

It can be seen that || v —v"||> = vent1 I

B, then it can be proved that

|Q&(w)|2 dw and, if o g(w) is a bounded function on

lim Jlo—v"| = 0. (14)

n——+0o00
Eq. (14) shows that the error can be reduced as much as it is desired. Below, it is assumed that 7 is
chosen sufficiently large for that the error can be considered as negligible with respect to data
uncertainties and model uncertainties. It should be noted that a similar reasoning can be used if

the finite element analysis is used for constructing an approximation of the solution of the BVP
defined by Egs. (5) and (6).

3.6. Predictability of the mean model and updating with experimental data

For a sufficiently large value of n, the predictability level of the mean model can be measured in
estimating the norm [|v®*P — ¢"| such that

Iy
nWth=/ /'Wvﬁmm_wa%mw (15)
weB JO

From Egs. (5) and (6), it can be seen that there are m = 6 independent positive-valued parameters
which are /iy, hy, 15 for the geometry, y and ¢ for the constitutive equation, p for the mass density.
Consequently, parameter s is such that

§=(hlah29h3:)_}a§9£)€@mc Rma (16)
in which 2,, is the subset of R™ such that
D =10,400[x - - - x]0,400[ mtimes. 17

Approximation v" of v**P depends on s € Z,, and is then rewritten as v7(x, ). Let us assume that
the available experimental data allow v**P(x, 0,0; ®) to be known for x €]0,%,[ and w € B (in fact,
it is known for a finite set of discrete values of x and w). In this condition, the nominal value s of
the parameter can be updated in a value ¢ allowing the predictability of the mean model to be
increased, that is to say, such that

[0 = ghll = min e — f]. (18)

m

Below, in order to simplify the notation, ¢ is rewritten as s. Consequently, ¢ will represent the
nominal value of the parameter or its updated value using the experimental data (if these data are
available, that is not always the case, in particular for the complex dynamical systems). It should
be noted that error [[v**P — 07| is generally not sufficiently small due to data uncertainties and
particularly, due to model uncertainties. Therefore, the predictability of the nominal mean model
(the mean model with the nominal value of the parameter) or the predictability of the updated
mean model (the mean model with the updated value of the parameter) is not sufficient and has to
be improved by using a probabilistic approach of uncertainties.
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3.7. Predictability level in terms of the generalized matrices of the mean reduced model

Let [M;*P], [D$*P] and [K;*P] be the positive-definite symmetric (n x n) real generalized matrices
of the real system (experimental generalized matrices) corresponding to generalized matrices [M, ],
[D,] and [K,] of the mean reduced model. These matrices cannot directly be identified using
experimental modal analysis [29,30], but correspond to a transformation of the experimentally
identified matrices by a transformation depending on the experimental elastic modes and on the
elastic modes of the mean model (see Section 6). The predictability level of the mean model can
then also be measured by comparing matrices [M;?], [D;*P] and [K;P] with matrices [M,], [D,]
and [K, ], respectively. Consequently, one has to introduce norms of matrices. Let [4,] be a (n x n)
real matrix. The Frobenius norm and the matrix norm of matrix [4,] are defined by

. T 1/2 _
1[4l = (te{[A] [4]D 77, N[Aa]ll = pemnax I[4] b (19)

and verify the following inequalities:

LA < AN F < VLA, (20)

in which [|b||? = b7 + - - - 4 b2 is the Euclidean norm of b = (by, ..., b,) in R". Noting 4 as M, D or
K, one has

I4,] — [P < [A,] — [45P10 7 @2y

which shows that the norm |[[[4,] — [4;"]l|z allows the distance (between matrix [4,] of the
nominal or updated mean model with matrix [4; "] of the real system) to be estimated. Due to
data and model uncertainties, for the generalized mass, damping or stiffness matrix, this distance
is not sufficiently small and has to be reduced by using a probabilistic model of uncertainties.

4. Foundations of the non-parametric probabilistic approach of model uncertainties

The objective of this section is to explain the main ideas and the foundations of the non-
parametric probabilistic approach for data and model uncertainties, using the simple example
presented in Section 3. In a first part, one recalls the usual parametric probabilistic approach of
data uncertainties and one investigates the limitation of such an approach to take into account
model uncertainties. In a second step, the non-parametric probabilistic approach is introduced
and it is shown that the random matrix theory has to be used to obtain a constructive approach.

4.1. Algebraic notations

(A) Euclidean space: Let x = (xy,...,Xx,) be a vector in R". The Euclidean space R" is equipped
with the usual inner product (x,y)— (x,y) = Z]'.l:l x;y; and the associated norm ||x|| = (x,x)/2.
(B) Matrix sets: Let M,,,,(R) be the set of all the (n x m) real matrices, M,(R) = M,,,(R) be the
set of all the square (n x n) real matrices, M;f(R) be the set of all the (n x n) real symmetric
matrices, M;O(R) be the set of all the (n x n) real symmetric semipositive definite matrices and
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M (R) be the set of all the (n x n) real symmetric positive-definite matrices. We then have

M (R) ¢ MP(R) ¢ M3(R) € M,(R). (22)

4.2. Probability distribution of a symmetric random matrix

Let [A,] be a random matrix with values in Mf([R{) which means that [A,]" =[A,]. The
probability distribution Pps,; of random matrix [A,] is defined by a probability density function
[An]>ppa, ([42]) from ME(R) into R = [0, +-o00[, with respect to the measure (volume element)
dA, on ME(R), if

P [An](aAn) = p[An]([An])aAn- (23)

Volume element aAn on ME(R) is defined (see [14]) by
dd, =2""0% T[  didaly. (24)

I<igj<n

in which d[4,]; is the Lebesgue measure on R for real variable [4,];;. The normalization condition
is then written as

/ Pia,([4n]) aAn =l (25)
M3 (R)

For instance, the Gaussian Orthogonal Ensemble (GOE) of random matrices is constituted of
random matrices [A,] for which the probability density function 1is written as
Pia,)([4n]) = C X exp(—4 tr{[4,]*}), in which 1 is a positive constant and C, is the normalization
constant which is calculated by using Eq. (25) and an adapted algebraic method (see for instance
Refs. [16,34]). Let S =(S4,...,S,) be a random vector with values in R” whose probability
distribution Pg(ds) on R” is defined by a probability density function s+ pg (s) with respect to
ds = ds; ... ds,, that is to say Ps(ds) = pg(s)ds. Let s+ [a,(s)] be a given function from R” into
M,‘f (R), such that [A,] = [@,(S)] is a second-order random matrix with values in Ml;f (R) that is to
say such that E{||[A,] ||12p} < + oo in which E is the mathematical expectation. Then, the probability
distribution Ppu,(d4,) on M,f([R{) of random matrix [A,] is defined by a probability density
function pyy ;([4,]) with respect to d4, and

E{I[AIF} = / LA pia, (4] d A, = / Ifan($)]lI7s(s) ds. (26)
M3 (R) R”

n

4.3. Parametric probabilistic approach

Consider the example presented in Section 3. The parametric probabilistic approach of data
uncertainties consists in modelling parameter s in &,, (with m = 6, see Eqgs. (16) and (17)) by an
R™-valued second-order random variable S = (S},...,Ss) with

Si=H, S:=H,, S3=H3;, S;=Y, Ss=E S¢=R, (27)

whose support of its probability distribution Pg(ds) is &,,. From Egs. (7) to (11), it can be
deduced that, for x fixed in ]0,4,[ and for w fixed in B, approximation v"(x,®) of frequency
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response v(x, ®) of the mean model becomes a complex-valued random variable V7, (x, ), such
that
Vit o)=Y O (@) VE*(x), x €]0,hy], (28)
=1

in which V0" (x) = /2/S) sin(anx/S}). The C"-valued random variable Qp,, (w) = (O (), ...,
O""(w)) has to verify the following random equation:

(—a)2[Mpar,n] + i0[Dpar.n] + [Kpar,n])anr(w) =f"(w), weB, (29)

where f"(w) is defined by Eq. (12). The generalized mass, damping and stiffness random matrices
[Mpar.n], [Dpar.n] and [Kpar,q] are defined by

[Mpar] = [ma(S)],  [Dparal = [dn(S)],  [Kpara] = [kn(S)], (30)
in which the functions s [m,(s)], s — [d,(s)] and s+ [k,(s)] from Z,, into M| (R), are defined by
[ma($))p = 1(8)00ps  [dn(S)],p = 2551()0x(8)00p,  [kn($)],p = 11(S) 05(8)” S, (31

in which s = (sq,...,56), u(s) = $25356, with
si=h, sa=h, s3=h, sa=y, s5=¢ 56=0p, (32)

and where
545385 (o 2 5

wy(s) = sest (E) = Cpar(S)a”, a=1, (33)

in which c¢p,.(s) is defined by the first Eq. (33). The random eigenfrequencies associated with the
random elastic modes { VP (x),a = 1,...,n} are {Q, = 0,(S),a = 1,...,n}.

(A) Fundamental properties of the generalized random matrices: Noting A as M, D or K, and a as
m, d or k, since for all s € Z,,, matrix [a,(s)] belongs to M/ (R), it can be deduced that random
matrix [Apar,] = [@,(S)] (see Eq. (30)) is such that

[Apara] € MF(R)  almost surely. (34)
In addition, it can be proved (see Refs. [15,23]) that, for all w fixed in B, the random Eq. (29) has a
unique second-order random solution Q’;ar(w) if and only if one has
E{I[Apara] ™17} < + 0. (35)

Eqs. (34) and (35) define the two fundamental properties for random matrices [Mpar ], [Dpar,»] and

[Kpar,n]-
(B) Ranges of the mappings defining the generalized random matrices: Let .o/, be the range of
mapping s+ [a,(s)] from 2, C R” into M (R), that is to say,

A parn = {[An] € M (R), [A4,] = [an(s)] for s € Z,,}. (36)
Clearly, one has
A parn C M (R), (37)
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in which .7y, is a smaller set than M F(R) because, for any s in Z,,, [4,] = [a,(s)] is a diagonal
matrix in M (R) (see also next Section (C)).

(C) Non-capability of the parametric approach to span any positive values of the eigenfrequencies:
First, it should be noted that {[a,(s)],x € Z,,} does not coincide with the set of all the diagonal
matrices in M/ (R). Instead of giving an additional proof of this fundamental property, let us
concentrate the developments on the difficulties of the parametric approach to represent any
model uncertainty. When parameter s = (4, /i, h3, y, &, p) runs through all the possible values of
vector s in 9,,, the eigenfrequencies of the dynamical system are given by Eq. (33). Let 4,(s) =
w,+1(8) — w,(s) be the distance between two successive eigenfrequencies. One then has A4,(s) =
(20t + 1) cpar(s) and consequently, the spacing rate distribution 6,(s) = 4,11(s)/4,(s) is such that

2

— [ >
09 =145 >l (38)

Eq. (38) shows that d,(s) is independent of s and, therefore, when s runs through 2,,, any spacing
rate distribution {J,(s),x>1} cannot be spanned by the parametric approach. However, it can
clearly be seen that model uncertainties can lead the spacing rate distribution to be different. For
the simple example considered, the eigenfrequencies of the 3D elastic body defined in Fig. 2 does
not have the spacing rate distribution defined by Eq. (38).

(D) Probability distribution of the generalized random matrices: Let o/p,, be the range of
mapping s [a,(s)] defined in Section 4.3 (B). The probability distribution Py, ,; of random
matrix

par,n

[Apar.n] = [ax(S)], (39)

is then the image of probability distribution Pg on &, by the mapping s+ [a,(s)] from Z,, onto
o parn and consequently, is a probability distribution on .7, C M (R). Probability distribution
Ps and then, probability distribution Ps 1, have to be such that Eq. (35) holds, i.e.,

ar, i

E{I[Apa] ™ 2 = / ()] 1 Ps(ds)

gm

_ / NEA 13 Piai(dA,) < + oo, (40)
=~cf/par,ix

Clearly, the condition defined by Eq. (40) is not satisfied for any probability distribution Pg(ds) on
9,,. For instance, for A =M and a = m, Eqgs. (30) and (31) yield [Mpam]_1 = (RH-,H3)"'[I,] in
which [/,] is the identity matrix. Therefore, one has E{||[Mpar7n]*l ||%} =nE{(R H2H3)72}.
Assuming that R, H, and H3 are three independent random variables, one has

EUMpund 13 =0 [ P [ P [ P (41)
RT R h; R 3

For instance, if Pr(dr) = 1) 40c(r)(1/ p) exp(—r/ p)dr, then R is a second-order random variable
with values in ]0,4o0c[, such that E{R} = p and is invertible almost surely. Nevertheless, the
inverse R~! is not a second-order random variable because E{R™>} = +o0. In such a case, one has
E {||[Mpar,n]_1 ||%} = +o0. It can be concluded that Pg(ds) has to satisfy necessary conditions for
Eq. (40) holds for [Mpar,], [Dpars] and [Kpar,]. For a complex mechanical system having a large
number of random parameters such as random fields, the construction of a probability model of
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the parameters is not so easy to perform in order to preserve the property defined by Eq. (40)
which, however, has absolutely to be satisfied.

(E) Probability of the stochastic model with the parametric probabilistic approach of random
uncertainties: Similar to Eq. (15), the predictability of the stochastic model defined by Egs. (28)

and (29) can be measured by the norm H\ve"p — Vgarm such that

h
\W“J%W=/LWEWWM&@—%AMMNMw 42)
weB J0

As explained in Section 3.7, the predictability level of the stochastic model can also be evaluated in
comparing the generalized random matrices of the random reduced model with the corresponding
matrices for the real system estimated from experiments. Consequently, the following norm
(square of the norm) allows the distance between random matrix [Apar,] = [@,(S)] and matrix
[4;P] of the real system to be calculated

EMMM—WW&=/IM@FMWﬁ&m)

Qm

=/ 1A — (AP Pra . 1(@A,) < + oo (43)
LO/par,n

Clearly, matrix [AS*] relative to the real system belongs to set M (R) but, due to model
uncertainties, [4°?] does not generally belong to subset .o7p,,, C M (R) (see Fig. 5) and the
mean-square error defined by Eq. (43) is then not sufficiently small.

4.4. Introduction of the non-parametric probabilistic approach

As previously, M, D or K (mass, damping of stiffness generalized matrix) are denoted as A. The
problem is then to introduce a non-parametric probabilistic approach of data uncertainties and
model uncertainties in order to increase the predictability of the model, for instance, in reducing
the mean-square error defined by Eq. (43).

Fig. 5. The set .o/ par, is a subset of M T(R), the matrix [45*"] belongs to M;[(R) but, due to model uncertainties, [45*"]
does not belong to .-
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(A) Non-parametric probabilistic approach: The non-parametric probabilistic model of random
uncertainties consists in substituting each random diagonal matrix [Apar,] in Eq. (29) by a full
random matrix [A,] whose probability distribution Ps,j(d4,) is directly constructed by using the
available information deduced from the mean reduced model defined by Eqgs. (7) to (12), instead
of constructing the probability distribution as the image of probability distribution Pg by
mapping s+ [a,(s)]. Therefore, from Eqgs. (7) and (8), it is deduced that the non-parametric
probabilistic model of random uncertainties is written as

V'(x,w) = Z 0, (0, (x), x€]0,h], (44)
a=1

(0’ [M,] + io[D,] + [K,) Q"(0) = f'(@), € B. (45)

(B) Available information for each random generalized matrix: With the non-parametric
probabilistic approach, it is assumed that the mean reduced model defined in Section 3.4
constitutes the fundamental available information. Taking into account the algebraic properties
defined by Egs. (34) and (35), the following available information for each random generalized
matrix [A,] can be deduced:

[A,] € Mf(R) almost surely, (46)
E{I[A] 717} = < + o0, (48)

in which ¢ is an unknown constant which is positive and finite.

(C) Constructing the probability distribution of the generalized random matrices: The problem is
then to construct probability distribution Pjs,(d4,) on subset M (R) such that Eqgs. (46)-(48) are
satisfied. Such a construction has been performed by using the entropy optimization principle (see
Refs. [14,15,25]) and will be summarized in Section 5.

(D) Capability of the non-parametric approach to take into account model uncertainties: The
mean-square error between random matrix [A,] and experimental matrix [4; "] is given by

EUA A7) = [ 1]~ A7 i@ < +00 (49)

Eq. (49) has to be compared to Eq. (43). Since .Zpar, C M (R), one can take P, = Piaas
which means that the support of probability distribution Pps,j 1S .%7par,. In this case, one has
[A,] = [Apar,n] which proves that the non-parametric approach has the capability to model data
uncertainties. In addition, since the support of Py, is M;{(R) with .o e, C M;’(R) (see Eq. (37)),
the non-parametric probabilistic approach allows a larger class of random matrices to be
constructed and consequently, has, a priori, the capability to take into account model
uncertainties. For instance, let us assume that the model uncertainties are sufficiently high for
that [AP]¢ o pars (see Fig. 5). Since [A45*P] belongs to M[(R), Eq. (49) shows that there exists a
probability distribution Ppa,) on M;"(R) which allows the mean-square error to be reduced. For
instance, taking Pja,j(d4,) = 0o([4,] — [4},P]), in which &, is the Dirac measure on M,(R), leads
the error to be zero because [A4;*?] belongs to M} (R). Of course, Pja,) cannot be arbitrarily chosen
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on Mf(R) but has to be constructed using the random matrix theory presented in Section 5.
Consequently and intuitively, it can be assumed that there is a probability measure Ppa,; on M (R)
verifying the properties defined by Egs. (46)—(48), and such that

/ I[Au] = [ASP1I7Pra,i(dAdn) < / 1[Au] = LASP1IF Piape,a(dA40), (50)
M (®)

Mpar,n
which means that

E(II[A,] = [AS11 2} < E{I[Apara] — [ASP]I17). (51)

5. Random matrix ensembles for the non-parametric modelling of random uncertainties

As explained in Section 4.4 (C), one has to construct probability distribution Pps,j(d4,) on
M(R) verifying Eqs. (46)—(48). This is the objective of this section. One limits the presentation in
giving a summary of the results concerning the two random matrix ensembles that one needs for
treating the simple example introduced in Section 3 and developed in Section 4.4: the set SG* and
the set SE™ (another ensembles of random matrices useful for the non-parametric probabilistic
approach of random uncertainties can be found in Ref. [25]).

5.1. Normalized positive-definite ensemble SG™ of random matrices

The first ensemble SG* of random matrices, called the the normalized positive-definite ensemble,
has been constructed (see Refs. [14,15]) in the context of the development of an approach for
modelling random uncertainties in dynamical systems with a non-parametric probabilistic
approach. This ensemble constitutes the main ensemble used for constructing the second ensemble
SET. Ensemble SG™ differs from the GOE and from the other known ensembles of the random
matrix theory (for a synthesis of these known ensembles of the random matrix theory, see Ref.
[34]).

(A) Definition of ensemble SG*: This ensemble is defined as the set of all the random matrices
[G,], defined on a probability space (4,7, P), with values in M (R), whose probability
distribution is constructed by using the entropy optimization principle [31,35] for which the
constraints (define as the available information) are the following (which have to be compared to
the constraints defined by Eqs. (46)—(48)):

(1) Matrix [G,] is a symmetric positive-definite real random matrix, that is to say,

[G,] € M (R) almost surely. (52)

(2) The mean value [G,] of random matrix [G,] is the (n x n) identity matrix [/,],

E{[Gu]} = [G,] = 1] € M (R). (33)
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(3) Random matrix [G,] is such that
E{ln(det[G,])} = v with |v|< + o0. (54)

B) Dispersion parameter of a random matrix in ensemble SG*: Let 5 >0 be the real parameter
4 p

defined by
E{”[Gn]—[gn]”%}}lﬂ {1 ) }1/2
o= =< - E{|[G,] - [I, , 55

that allows the dispersion of the probability model of random matrix [G,] to be fixed. The
constraint defined by Eq. (54) introduces a free parameter v in the model. Since this parameter v
has no simple meaning, this free parameter v is rewritten in terms of the dispersion parameter
which is the new free parameter of the model. In Ref. [15], it is proved that the dispersion
parameter of the probability model has to be independent of 7, such that

O<5<\/(n+1)(n+5)_1. (56)

(C) Probability distribution of a random matrix in ensemble SG*: The probability distribution

PiG,) of random matrix [G,] is defined by a probability density function [G,]—p(g 1([G,]) from

M(R) into R* = [0, +o0[, with respect to the measure dG, on set M3 (R) such that (see Eq. (24)),

dG, = 2=/ ITi< <j<ndlGyl;. We then have P, = p[Gn]([Gn])aGn with the normalization
condition fM;(R) 716,)([Gx]) dG, = 1. Probability density function p 1([G,]) is then written as

(n+1)
s tr[Gn]}, (57)

in which T+ )([G,)) is equal to 1if [G,] € M (R) and is equal to zero if [G,]¢ M/ (R) and where
the positive constant Cg, is such that

1=
P (GaD) = Ty (Gal) x Ca, x (det[G, )"V x exp{—

(27,[)—}1()1—1)/4((” + 1)/252)11(}'!4-1)(252)7[

T L (4 1)/28 + (1= )2}

(58)

with I'(z) the gamma function defined for z>0 by I'(z) = 0+°° t*~le~'dt. Eq. (57) shows that
{{Gulix> 1 <j<k<n} are dependent random variables. If (n+ 1)/6* is an integer, then Egs.
(57)—~(58) show that the probability distribution is a Wishart distribution [32,33]. In general,
(n+ 1)/52 is not an integer and consequently, the probability distribution is not a Wishart
distribution.

(D) Second-order moments of a random matrix in ensemble SG*: It can be proved that [G,] is a
second-order random matrix: Since [G,] = [/,], the covariance Cﬁw w Of random variables [Gy]
and [G, ]y, defined by C%',, = E((Gyly — [1J;)(Gulye — L)) s written as

2

0
ity = g Wyl Ll + Ul Ul
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In particular, the variance of random variable [G,]; is

2

Vi = S (LI, (59)

(E) Algebraic representation of a random matrix in ensemble SGT: The following algebraic
representation of random matrix [G,] allows a procedure for the Monte Carlo numerical
simulation of random matrix [G,] to be defined. With this procedure, the numerical cost induced
by the simulation is a constant that depends on dimension # but that is independent of the values

of parameter 6. Random matrix [G,] can be written as
[Gn] = [Ln]T[Ln]a (60)

in which [L,] is an upper triangular random matrix with values in M,,(R), such that

(1) the random variables {[L,];,j</'} are independent;

(2) for j<j', the real-valued random variable [L,]; can be written as [L,];; = ¢,U; in which
on = 0(n+ 1)’1/ 2 and where U 7 1s a real-valued Gaussian random variable with zero mean
and variance equal to 1;

(3) for j =, the positive-valued random variable [L,]; can be written as [L,]; = g,,/2V; in

which o), is defined above and where V; is a positive-valued gamma random variable whose

probability density function ij(v) with respect to dv is written as
1

U(n+1)/252—(1+j)/2 e . (61)
I((n+1)/28%+ 1 —j)/2)

Py, (0) = T (0)

(F) Convergence property of a random matrix in ensemble SG* when dimension goes to infinity: It
is mathematically proved that E{|[[G,]™ ||12p}< + oo and therefore that E{|[[G,]"'||’} < + co. In
addition, the following fundamental property is proved [15]:

vn=2, E([G.] 11 <Cs< + oo, (62)

in which Cjs is a positive finite constant that is independent of » but that depends on 0. Eq. (62)
means that n— E{||[G,]"'||?} is a bounded function from {n>2} into R*. This fundamental
property is strongly used to prove that the sequence of random fields {x— V"(x, w)}, defined by
Eqgs. (44) and (45) has a second-order limit when dimension # of the reduced model goes to infinity
(see Ref. [15]). It should be noted that Eq. (52) shows that random matrix [G,] is invertible almost
surely, but since the almost-sure convergence does not yield the mean-square convergence, then an
additional condition has to be introduced to obtain the property defined by Eq. (62). This is the
role played by Eq. (54).

5.2. Positive-definite ensemble SE™ of random matrices

The second ensemble SE™ of random matrices, called the the positive-definite ensemble, has been
constructed in Refs. [14,15], simultaneously with SG™. This ensemble is used for constructing the
probability model of the generalized mass, damping and stiffness matrices of the reduced model
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for dynamical systems without rigid body displacements. This random matrix ensemble is
required for constructing probability distribution Pps,(d4,) on M (R) verifying Eqs. (46)—(48).

(A) Definition of ensemble SE™: The ensemble SE™ is defined as the set of all the random
matrices [A,], defined on probability space (#4,7, P), with values in M (R), having similar
properties that the properties defined by Eqgs. (52)—(54), but for which

E{[A]} = [4,] € M, (R), (63)

where the mean value of [A,] is a given matrix [4,,] in M (R). Since matrix [4,] is positive definite,
there is an upper triangular matrix [L, ] in M,(R) such that

[A4,] =L, ] [Ly]. (64)

which corresponds to the Cholesky factorization of matrix [4,,]. Consequently, ensemble SE™ is
defined as the set of all the matrices [A,] which are written as

[As] = [Ly,I'TGAIIL4, ). (65)

in which matrix [G,] is the random matrix in ensemble SG™.
(B) Properties of a random matrix in ensemble SE™: Taking into account Egs. (52), (53), (59) and
(62), it can be deduced that a random matrix [A,] belonging to SE™ has the following properties:

(1) Matrix [A,] is a symmetric positive-definite real random matrix
[A,] € MF(R) almost surely. (66)

(2) Matrix [A,] is a second-order random variable

E{II[AMIF} < + oo. (67)

(3) The mean value of random matrix [A,] is such that
E([A:]} = [4,] € M (R). (68)

(4) Random matrix [A,] is such that
E{I[A] 1P <E(IIALL 17} < + o0. (69)

Consequently, a random matrix [A,] belonging to ensemble SE™ satisfies the constraints defined
by Egs. (46)—(48). One then has constructed the probability distribution Pps,;(d4,) on M (R)
verifying Eqs. (47) and (48). This probability is directly deduced from Egs. (57) and (65) and can
be found in Refs. [14,15].

(C) Dispersion parameter of a random matrix in ensemble SE™: The dispersion of random matrix
[A,] is controlled by parameter ¢ defined by Eq. (55), verifying Eq. (56), and which is rewritten as
04>0, and which is such that

i N
5A={;E{II[Gn]—[1n]IIF}} . (70)
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Parameter, J 4, which has to be independent of » and which has to be chosen such that

0<5A<\/(n—|—1)(n—|—5)_1, (71)

allows the dispersion of the probability model of random matrix [A,] to be fixed. Finally, the
algebraic representation of random matrix [A,] is given by Eq. (65) with Egs. (60) and (61), and
allows realizations of random matrix [A,] to be numerically constructed.

(D) Probability model of a set of random matrices in ensemble SE™: Let us consider v random
matrices [A;], ...,[A] belonging to ensemble SE™. This means that the mean values of the random
matrices are known but that no information is available concerning correlation tensor between two
any random matrices such as [A{l] and [Aﬁ]. Then, applying the entropy optimization principle, it can
be proved that the probability density function ([A,lq] S[A]) Pl A‘]([A l,...,[4)]) from

.....

MF(R) x --- x MF(R) into R* with respect to the measure (volume element) dA,l1 cee X HA; on
M3(R) x --- x M3(R) is written as

Pty (Tl - [ALD = pay[A4,]) x - - X pan((43D), (72)
which means that [A,ll], ...,[A}] are independent random matrices.

6. Experimental estimation of the dispersion parameters of the non-parametric probabilistic model

Let 057, 0p and dg be the dispersion parameters of the random generalized mass, damping and
stiffness matrices. Since the dispersion parameters have to be independent of n (see Section 5.2
(C)), the dispersion parameters can be estimated by using the experimental matrices [M*P], [DS*P]
and [K$*P] for a dimension v <n. Here, a very simple procedure is proposed for estimating o, dp
and Jg (this procedure corresponds to the first step of the procedure based on the maximum
likelihood principle and developed in Ref. [25]. The first step of this procedure consists in
associating with the v first computed elastic modes of the mean model, the corresponding v
experimental elastic modes obtained by performing the experimental modal analysis [29,30] of the
real system. Let 0<w;*<---<o;" be the set of the v experlmental eigenfrequencies
corresponding to the set of the v first computed eigenfrequencies 0 <w; < --- <w, of the mean
model. In order to simplify the development, the same set of dof for the mean model and for the
real system is considered, but this assumption can easily be released. Thus, for a given set of m
dof, let [?*P] be the (m x v) real matrix whose columns are the v experimental elastic modes
associated with eigenfrequencies 0< ;" < --- <@’ and let [®,] be the (m x v) real matrix whose

columns are the v first computed elastic modes assoc1ated with eigenfrequencies 0<w; < -+ - <w,.
Let [MeXp] [Di p] and [I?v ] be the corresponding experimental generalized mass, dampmg and

stiffness matrices of the real system directly deduced frorn the experimental modal analysis of the
real system and such that [A~4 Lig = 15 3 [D, ]aﬂ =281 o, and [I?iXp]aﬁ =
1" (weXp)zéaﬁ Let [M,], [D,] and [K,] be the random matrices assoc1ated with the mean reduced

model of dimension v and defined in Section 4.4. Since the experimental elastic modes ¢ dlffer from
the elastic modes constructed with the mean model (due to uncertainties), matrices [M ] [D ]
and [K p] are not represented in the same vector subspace than [M,], [D,] and [K,] (or
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equivalently than [M,], [D,] and [K,]). However, it can be written that
[PV = 2,147, (73)

in which 7" is the C"-vector of the experimental generalized coordinates and where q%*P is the
corresponding C™"-vector of the generalized coordinates in the mean-model basis. By construction,
the matrix [‘PCXP] [‘P‘”‘p] € M,(R) is invertible. Introducing the left pseudo-inverse
(P PEP) PTT € M,u(R) of [PEP] € M, (R), Eq. (73) vields

qQ =[S, (74)
in which the matrix [S}*?] € M,(R) is written as
[S9P] = ([(PT [Ps) [T [2,]: (75)

The matrlx transformatlon defined by Eqgs. (74)—~(75) allows the experimental matrices [Z\?ixr’],

[D ] and [K ] to be transformed into the matrices [M:*P], [D{**] and [K{*P], which are defined
by

(M) = [S20] (M, VISS) € MF(R),

exp

[DYP] = [STPI'D, " 1871 € M (R),

(K] = [S3PT'IK, VISS ) € MY (R). (76)
Noting 4 as M, D or K, one can then introduce the matrix [GS**] € M (R) such that [4SP] =
[L, ]T[GeXp][L 4,] in which the invertible upper triangular matrix [L, ] € M,(R) is such that
[4, ] =[L,, ]T[L 4,] € M " (R). Therefore, matrix [GS*] is given by the equation

[GYP] = [L ] TIATPILA] T € MY (R). (77)

Consequently, one realization [G}*?] of random matrix [G,] defined by Eq. (65) has effectively
been constructed. Since, only one realization [A4"] of random matrix [A,] is assumed to be
available and is given by Eq. (76) for 4 equal to M, D or K, the dispersion parameter 64 of
random matrix [A,] which is defined by Eq. (70) can then be estimated by the following equation

1 1/2
Sy = {; I[GSP] — [In]u%} : (78)

Eq. (78) gives an estimation for the dispersion parameters d,7, 0p and dg of random matrices

[M, ], [D,] and [K,] for any value of n, knowing one realization [Z\~l iw], [l~):Xp] and [I?iXp] of the real
system resulting from the experimental modal analysis.

7. Solving the stochastic equation of the dynamical system with the non-parametric probabilistic
model of random uncertainties

This section deals with (1) the method for solving the stochastic equation of the dynamical
system with the non-parametric probabilistic model of random uncertainties, (2) the convergence
aspects and (3) the construction of the confidence region of the random frequency response
functions.
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7.1. Solving the stochastic equation

For all w fixed in frequency band B, the stochastic equation (45) has to be solved with the
probabilistic model of random matrices [M,,], [D,] and [K,] defined by Eq. (72) with Eq. (65) and
Eqgs. (57)—(58) which defines the probability density function of each random matrix whose
dispersion parameter is defined by Eq. (70). It is assumed that the dispersion parameters oy, dp
and Jk of random matrices [M,], [D,] and [K,] are given and are, for instance, estimated by using
the results presented in Section 6 if experimental data are available.

Due to the properties defined by Egs. (46)—(48) for each random matrix, it is proved (see
Ref. [15] or [23]) that the family {Q"(w), w € B} of random variables verifying Eq. (45) is a second-
order stochastic process. The system of the marginal probability distributions of this stochastic
process can explicitely be written but required the calculation of a very large number of high-
dimension integrals on R” with y =3 x n x (n+ 1)/2. Consequently, such an approach is not
constructive and is then substituted by the use of the Monte Carlo numerical simulation method
[36] which is very efficient due to the use of a reduced model having a small dimension. Each
independent realizations [M,,(6;)], [D,(6x)] and [K,,(6;)] of random matrices [M,], [D,] and [K,] are
simply constructed by using Eq. (65) and the algebraic representation defined in Section 5.1 (E),
that is to say by using Eq. (60). Consequently, for all w fixed in B, the realization Q"(w; 0y) is
computed by solving the linear matrix equation

(=’ [M(01)] + io[D,(00)] + [Ku(00)]) Q"(; 01) = f'(w), € B. (79)

For each x fixed in ]0, 4, [, the corresponding realization V"(x, w; 0;) of the second-order random
variable V"(x, w) defined by Eq. (44) is given by

V(03 00) = Y 0,3 0)u, (), (80)
a=1

in which Q"(w; 0x) = (Qy(; O), . . ., Q(; Or)).
7.2. Convergence of the stochastic solution

Let .# =]0, ,[. The convergence of the stochastic solution V"(x,®) has to be analysed with
respect to the different parameters related to the approximation constructed. The first parameter
is the reduced model dimension n. The convergence of stochastic field {V"(x,w),x € .#,w € B}
towards a second-order stochastic field {V'(x, w),x € .#,w € B} when dimension n goes to infinity
can be analysed in introducing the following norm induced by Eq. (13):

1/2

hy
V-7 = {/ B/O E(|V(x,0) — V”(x,w)|2}dxdw} : (81)

Due to the fundamental mathematical property defined by Eq. (62), it can be proved (see
Ref. [15]) that the sequence of second-order stochastic fields {V"(x,w),x € #,w € B}~
converges to a second-order stochastic field {V(x,w),x € #,w € B} when dimension n goes to
infinity for the norm defined by Eq. (81). The second parameter is the number n, of realizations
used for constructing the statistics by the Monte Carlo numerical simulation method. From
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Section 3.5 and Eq. (44), it can easily be deduced that

" 1/2
wi={ [, 3 s} &
we 1

o=

Convergence with respect to dimension 7 of the reduced model and to number #, of realizations
used in the Monte Carlo numerical method, can then be studied by constructing the following
function:

. 1/2
wm»%m%w{%Z/BmmeM}. (83)

S k=1

7.3. Confidence region of the random frequency response functions

It is interesting to construct the confidence region associated with a probability level P, (by
example, P, = 0.96) for the modulus {|V"(x,w)|,w € B} of the random frequency response
function at a given point x fixed in ]0,%,[. The confidence region is constructed by using the
quantiles. For n, x and w fixed, let W(w) be the positive-valued random variable such that
W(w) = |V"(x,w)|. Let Fy (., be the distribution function (continuous from the right) of random
variable W(w), such that Fy,)(w) = P(W(w)<w). For 0<p<1, the pth quantile or fractile of
Fw(v) 1s defined as

{(p) = inf{w : Fyw)(w)=p}. (84)

Then, the upper envelope w(w) and the lower envelope w™(w) of the confidence region are
defined by

W) =L+ P/, W @) =L = P)/2), (85)

The estimation of wt(w) and w™(w) is performed by using the sample quantiles [26]. Let wi(w) =

Wi(w; 0y),...,wy (@)= W(w;0,) be the n, independent realizations of random variable

W(w) associated with the independent realizations V"(x,w;0,),..., V"(x,;0,) computed in

Section 7.1. Let wi(w)< --- <w,(w) be the order statistics associated with w(®),...,w, ().
Therefore, one has the following estimation:

wh(w) = wir(w), j© = fix(n(l+ P.)/2), (86)

w(w) = wi-(w), j~ = fix(n(l — P.)/2), (87)

in which fix(z) is the integer part of the real number z.

8. Numerical simulation and validation for the simple example in linear elastodynamics

In this section, a numerical simulation of the simple example introduced in Sections 3 and 4 is
presented in order to validate the non-parametric probabilistic approach of model uncertainties.
An “experimental” response of the real system is constructed by numerical simulation using a 3D
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z
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Fig. 6. Finite element mesh of the real system defined in Fig. 3.

elastodynamic model of the real system and the finite element method with a sufficiently large
number of dof.

8.1. Data for the numerical simulation

(A) Designed system: The data relative to the geometry defined in Section 3.1 are #; = 10m,
h, = 1m and h; = 1.5m. The designed structure is simply supported as shown in Fig. 2.

(B) Real system: The frequency band B is the band ]0,1000]Hz which means that
®max = 2000 x mwrad/s. The real system (see Fig. 3) is excited by the external load defined in
Section 3.2 with xy = 4.25m, ¢ = 0.06m and p™(w) = (4¢2)” "1 g(w) in which 15(w) =1 if w € B
and 1z(w) = 0 if w¢ B. Concerning the boundary conditions, the displacement field is zero on the
part of the boundary defined by {(x,y,z) : x=0,y €] —0.5,—0.375[,z €] — 0.75,0.75[} and by
{(x,y,2) : x =10,y €] — 0.5,—-0.375[,z €] — 0.75,0.75[}.

(C) Mean model: The mean model input defined in Section 3.3 is the point force located at
x = 4.25m with an intensity g(w) = —1p(w). The composite material of the designed system is
modelled by a homogeneous isotropic elastic material whose nominal parameters are
y=10""N/m?, p = 1700 kg/m?® and ¢ =0.01. The eigenfrequencies of the mean system are
given by Eq. (10) and are such that v, =11, v, =44, v; =99, v, = 176, vs = 275, v¢ = 396,
v, =539, v =704, vy = 891, v,, = 1100,...,v5, = 70385 Hz.
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Fig. 7. Mean model responses (thin solid lines) compare to the “‘experimental” responses of the real system (thick solid
lines). For each observation point Py, k = 1,..., 6, graph of function v log;{|v" (x, v)|} (thin solid line) compare with
the graph of function v+ log;o{|v™P(xx,0,0;v)|} (thick solid line). Horizontal frequency axis v in Hz. Observation
points: P; (up left figure), P, (up right figure), P; (medium left figure), P4 (medium right figure), Ps (down left figure),
Ps (down right figure).
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Fig. 8. Convergence: graphs of functions n, > log;o{Conv(n,, n)} for n = 20,30 and 60 (three lower thin solid lines, for
n = 80,120 and 160 (three upper lines: n = 80 (thin solid line), n = 120 (mid-solid line) and n = 160 (thick solid line).

8.2. Generating an “‘experimental” response of the real system by numerical simulation

An “experimental” response of the real system is obtained (1) in constructing a 3D elastic
model of the real system defined in Section 8.1 (B), (2) in discretizing the real system by the finite
element method and (3) in solving the equation with the modal analysis. The material is taken as
homogeneous and isotropic with a Young modulus 10" N/m?, a Poisson coefficient 0.15, a mass
density 1700 kg/m?. The modal damping rates are the realizations of a uniform random variable
on [0.009,0.011] whose mean value is 0.01. The finite element mesh is shown in Fig. 6 and is
constituted of 80 x 8 x 12 = 7680 3D 8-nodes solid elements. There are 9477 nodes and a total of
28 275 dof (due to the boundary conditions, the displacement is zero for 2 x 26 nodes). A point
force (0,—1p(w),0) is applied to the node of coordinates (4.25,0.5,0.75). The finite element
approximation of the displacement field (u**P, v**P, w**P) is computed on frequency band B by
using the modal analysis with the first 150 elastic modes. There are 101 eigenfrequencies in band B
and 49 eigenfrequencies in frequency band [1000, 1197] Hz. The fundamental eigenfrequency is

Vvi'? = 16 Hz. There are 14 eigenfrequencies in frequency band [0, 230] Hz. The eigenfrequencies of
the first 5 flexural modes corresponding to the first 5 elastic modes of the mean model (Euler
beam) and having, respectively, 2-6 nodes (zero Oy-displacement) on the neutral fiber are
jeXp = 16Hz, v;* = 40Hz, v'® = 91Hz, /" = 153Hz, V" = 220Hz with j, = 1,j, =3,j; =
7,js = 10,75 = 14 (Fig. 7).

Fig. 9. Confidence region predictions of the stochastic system (gray regions) compare with the mean model responses
(thin solid lines) and with the “‘experimental” responses of the real system (thick solid lines). For each observation point
Py, k=1,...,6, (1) graphs of functions v+ log;o{w{(v)} and v+ log,o{w; (v)} delimiting the confidence region (gray
region) of the stochastic system, (2) graph of function v log;{|v"(xx, v)|} (thin solid line) of the mean model response
and (3) graph of function v+ log;o{|v™*P(xx, 0, 0; v)|} (thick solid line) of the “experimental” response of the real system.
Horizontal frequency axis v in Hz. Observation points: P; (up left figure), P, (up right figure), P; (medium left figure),
P, (medium right figure), Ps (down left figure), Ps (down right figure).
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8.3. Comparison of the mean model prediction with the “‘experimental’’ response of the real system

For k=1,...,5, the difference between eigenfrequency V?Xp of the real system and the
corresponding eigenfrequency v, of the mean system are due to the boundary conditions and to
the model error (3D slender elastic body modelled by an Euler beam). In the present case, there is
no real interest in updating the mean model by using “‘experimental” data related to the real
system. Six observation points Py, P2, P3, P4, Ps and Pg belonging to the line (x,0,0),x €]0, A;[
(neutral fiber) and located at x; = 1.875m, x; =3.125m, x3 =4.250m, x4 = 5.000m, x5 =
6.375m and x¢ = 9.250 m, respectively, are considered. Observation point P; corresponds to the
driven point (excitation point). The frequency response functions are computed on the frequency
band ]0, 1000]Hz in 1000 frequency points corresponding to a frequency step 1Hz. For each
observation point Py, k =1, ..., 6, the frequency response function o+ v"(xx, ®) is computed by
using Eqgs. (7)—(12) with n = 80, and the “‘experimental” response @ > v**P(xy, 0, 0; @) is obtained
as explained in Section 8.2. Fig. 7 is related to a given observation point Py, k= 1,...,6 and
displays the mean model prediction w > log;o{|v"(xk, )|} compared with the “experimental”
response of the real system > log,o{|v®P(xk,0,0;w)|}. Fig. 8 shows that the mean model
predictions are reasonably good for frequencies lower than 120Hz and can locally be very
different for frequencies greater than 120 Hz.

8.4. Estimation of the dispersion parameters using the “‘experimental”’ response of the real system

An estimation of the dispersion parameters d,s, op and dg of the random generalized mass,
damping and stiffness matrices is performed by using the method presented in Section 6. The
experimental matrices [Z\NliXp], [l~)iXp] and [EixP] are constructed by using the 5 “experimental”

elastic modes of the real system computed in Section 8.2 whose “‘experimental” eigenfrequencies

are {o" =2m7", k =1,...,v} with v = 5<n. These “experimental” eigenfrequencies and the
associated “‘experimental” elastic modes correspond to the eigenfrequencies {w; = 2ny;, k =
1,...,v} of the first 5 flexural modes of the mean model (Euler beam). The (m x v) real matrix [@, ]

is constructed by using Eq. (11) for m = 79 nodes located at {x, = 10£/80,¢ = 1,...,m}. The
(m x v) real matrix [¥5*P] is constructed using the “experimental” elastic modes computed in
Section 8.2 with the m-dof corresponding to the free Oy-displacements at the finite element nodes
located on the neutral fiber at {x, = 10£/80,¢ = 1,...,m}. Such an estimation yields d,, = 0.29,
op = 0.30 and o = 0.68.

8.5. Prediction with the non-parametric probabilistic model of random uncertainties and
comparisons with the mean model prediction and with the “experimental’’ response of the real system

(A) Data related to the non-parametric approach: The calculations are carried out by using the
method presented in Section 7.1 with the dispersion-parameter values 6, = 0.29, ép = 0.30 and
Ok = 0.68 estimated in Section 8.4.

(B) Convergence of the stochastic solution: Convergence with respect to dimension n of the
reduced model and to number n; of realizations used in the Monte Carlo numerical method, is
studied as explained in Section 7.2. Fig. 8 displays the graph of function n;+— Conv(ny, n) defined
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by Eq. (83) for different values of n. This figure shows that a reasonable convergence is reached
for n>=80 and ny>1500.

(C) Confidence region of the random frequency response functions: The confidence region of the
modulus of the frequency response function at each observation point Py, P,, P3, P4, Ps or Pg
defined in Section 8.3, is calculated by using the method presented in Section 7.3. The upper and
lower envelopes (defined by Eq. (85)) delimiting the confidence region for frequency response at
observation point Py are denoted by w(w) and wi (w). The calculations are carried out with a
probability level P. = 0.96 and for n = 80 and n; = 3000. Fig. 9 displays the comparisons between
the mean model response predictions, the “experimental” responses of the real system and the
confidence region predictions of the stochastic system resulting from the use of the non-
parametric probabilistic approach of random uncertainties. Fig. 9 is related to a given observation
point Py, k=1,...,6 and displays (1) the graph of function w > log,{|t"(xx, )|} of the mean
model, (2) the graph of function w > log,,{|v**P(xx,0,0; ®)|} of the “experimental” response of
the real system and (3) the confidence region (gray region) delimited by the upper envelope
o > logo{w](w)} and the lower envelope w > log,{w; ()} of the stochastic system.

9. Conclusions

This paper gives a comprehensive overview of a non-parametric probabilistic approach recently
introduced for taking into account model uncertainties in structural dynamics. The foundations of
this approach are given in simple terms and all the concepts and the tools introduced in the
general theory are illustrated in using a simple example. In addition, this paper gives a new
validation point of the non-parametric theory of random uncertainties in structural dynamics and
vibration analysis.

References

[11 G.I. Schueller (Ed.), A state-of-the-art report on computational stochastic mechanics, Probabilistic Engineering
Mechanics 12 (4) (1997) 197-321.

[2] E. Vanmarcke, M. Grigoriu, Stochastic finite element analysis of simple beams, Journal of Engineering Mechanics
ASCE 109 (5) (1983) 1203-1214.

[3] M. Shinozuka, G. Deodatis, Response variability of stochastic finite element systems, Journal of Engineering
Mechanics 114 (3) (1988) 499-519.

[4] R. Ghanem, P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, New York, 1991.

[5] M. Kleiber, D.H. Tran, T.D. Hien, The Stochastic Finite Element Method, Wiley, New York, 1992.

[6] R. Ghanem, Ingredients for a general purpose stochastic finite elements formulation, Computer Methods in Applied
Mechanics and Engineering 168 (1999) 19-34.

[71 R. Ghanem, M. Pellissetti, Adaptive data refinement in the spectral stochastic finite element method,
Communications in Numerical Methods in Engineering 18 (2) (2002) 141-151.

[8] R. Ghanem, Stochastic finite elements with multiple random non-gaussian properties, Journal of Engineering
Mechanics 125 (1) (1999) 26—40.

[9] C. Soize, R. Ghanem, Physical systems with random uncertainties: chaos representation with arbitrary probability
measure, SIAM Journal on Scientific Computing 26 (2) (2004) 395-410.

[10] G.S. Székely, G.I. Schuéller, Computational procedure for a fast calculation of eigenvectors and eigenvalues of

structures with random properties, Computer Methods in Applied Mechanics and Engineering 191 (2001) 799-816.



652 C. Soize | Journal of Sound and Vibration 288 (2005) 623652

[11] H.J. Pradlwarter, G.I. Schuéller, G.S. Szekely, Random eigenvalue problems for large systems, Computer and
Structures 80 (2002) 2415-2424.

[12] R. Ohayon, C. Soize, Structural Acoustics and Vibration, Academic Press, San Diego, London, 1998.

[13] R. Ghanem, A. Sarkar, Reduced models for the medium-frequency dynamics of stochastic systems, Journal of the
Acoustical Society of America 113 (2) (2003) 834-846.

[14] C. Soize, A nonparametric model of random uncertainties for reduced matrix models in structural dynamics,
Probabilistic Engineering Mechanics 15 (3) (2000) 277-294.

[15] C. Soize, Maximum entropy approach for modeling random uncertainties in transient elastodynamics, Journal of
the Acoustical Society of America 109 (5) (2001) 1979-1996.

[16] C. Soize, Random matrix theory and non-parametric model of random uncertainties, Journal of Sound and
Vibration 263 (2003) 893-916.

[17] C. Soize, H. Chebli, Random uncertainties model in dynamic substructuring using a nonparametric probabilistic
model, Journal of Engineering Mechanics ASCE 129 (4) (2003) 449-457.

[18] C. Soize, Uncertain dynamical systems in the medium-frequency range, Journal of Engineering Mechanics 129 (9)
(2003) 1017-1027.

[19] E. Capiez-Lernout, C. Soize, Nonparametric modeling of random uncertainties for dynamic response of mistuned
bladed disks, Journal of Engineering for Gas Turbines and Power 126 (2004) 600-618.

[20] C. Soize, Transient responses of dynamical systems with random uncertainties, Probabilistic Engineering
Mechanics 6 (4) (2001) 363-372.

[21] J. Duchereau, C. Soize, Transient dynamics induced by shocks in stochastic structures, in: A. der Kiureghian, S.
Madanat, J. Pestana (Eds.), The Proceedings of ICASP9, Berkeley, San Francisco, July 6-9, 2003; Applications of
Statistics an Probability in Civil Engineering, vol. 1, Millpress, Rotterdam, 2003, pp. 267-273, ISBN 90 5966 004 8.

[22] H. Chebli, C. Soize, Experimental validation of a nonparametric probabilistic model of non homogeneous
uncertainties for dynamical systems, Journal of the Acoustical Society of America 115 (2) (2004).

[23] C. Soize, Nonlinear dynamical systems with nonparametric model of random uncertainties, Uncertainties in
Engineering Mechanics Journal, 1 (1) (2001) 1-38, e-journal from Resonance Publication, http://www.resonance-
pub.com.

[24] C. Desceliers, C. Soize, S. Cambier, Nonparametric-parametric model for random uncertainties in nonlinear
structural dynamics—application to earthquake engineering, Earthquake Engineering and Structural Dynamics 33
(3) (2004) 315-327.

[25] C. Soize, Random matrix theory for modeling uncertainties in computational mechanics, Computer Methods in
Applied Mechanics and Engineering 194 (12-16) (2005) 1333-1366.

[26] R.J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, 1980.

[27] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, fourth ed., McGraw-Hill, New York, 1989 (vol. 1,
1989 and vol. 2, 1991).

[28] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Springer,
Berlin, 1992.

[29] D. Ewins, Modal Testing: Theory and Practice, Wiley, New York, 1984.

[30] K. McConnell, Vibration Testing: Theory and Practice, Wiley-Interscience, New York, 1995.

[31] E.T. Jaynes, Information theory and statistical mechanics, Physical Review 106 (4) (1957) 620-630 & 108 (2) (1957)

171-190.

2] T.W. Anderson, Introduction to Multivariate Statistical Analysis, Wiley, New York, 1958.

3] C. Fougeaud, A. Fuchs, Statistique, Dunod, Paris, 1967 (2nd ed. 1972).

4] M.L. Mehta, Random Matrices, Revised and Enlarged second ed., Academic Press, New York, 1991.

5] C.E. Shannon, A mathematical theory of communication, Bell System Technology Journal 27 (1948) 379-423,

623-659.
[36] R.Y. Rubinstein, Simulation and the Monte Carlo Method, Wiley, New York, 1981.

[3
[3
[3
[3


http://www.resonance-pub.com
http://www.resonance-pub.com

	A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics
	Introduction
	Comments concerning notation used

	Errors and uncertainties in a predictive model of a real system
	The designed system
	The real system
	The mean model as a predictive model: Errors and uncertainties

	Defining a simple example in linear elastodynamics
	The designed system
	The real system
	The mean model as a predictive model
	Frequency response approximation constructed using the mean reduced model
	Errors related to the use of a mean reduced model
	Predictability of the mean model and updating with experimental data
	Predictability level in terms of the generalized matrices of the mean reduced model

	Foundations of the non-parametric probabilistic approach of model uncertainties
	Algebraic notations
	Probability distribution of a symmetric random matrix
	Parametric probabilistic approach
	Introduction of the non-parametric probabilistic approach

	Random matrix ensembles for the non-parametric modelling of random uncertainties
	Normalized positive-definite ensemble SG^+ of random matrices
	Positive-definite ensemble SE^+ of random matrices

	Experimental estimation of the dispersion parameters of the non-parametric probabilistic model
	Solving the stochastic equation of the dynamical system with the non-parametric probabilistic model of random uncertainties
	Solving the stochastic equation
	Convergence of the stochastic solution
	Confidence region of the random frequency response functions

	Numerical simulation and validation for the simple example in linear elastodynamics
	Data for the numerical simulation


	Generating an 
	Comparison of the mean model prediction with the 
	Estimation of the dispersion parameters using the 
	Prediction with the non-parametric probabilistic model of random uncertainties and comparisons with the mean model prediction and with the 
	Conclusions
	References


