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Abstract

In structural dynamics, a predictive model is constructed by developing a mathematical–mechanical
model of a designed system in order to predict the response of the real system which is the manufactured
system realized from the designed system. The mathematical–mechanical modelling process of the designed
system introduces two fundamental types of uncertainties: the data uncertainties and the model
uncertainties. Uncertainties have to be taken into account for improving the predictability of the model.
Model uncertainties cannot be modelled by using the usual parametric probabilistic approach. Recently, a
general non-parametric probabilistic approach of model uncertainties for dynamical systems has been
proposed using the random matrix theory. This paper gives a comprehensive overview of this approach in
developing its foundations in simple terms and in illustrating all the concepts and the tools introduced in
the general theory, by using a simple example. This paper deals with (1) notions of designed systems, real
systems, mean models as predictive models, errors and uncertainties; (2) the definition of a simple example
in linear elastodynamics; (3) a comprehensive overview of the non-parametric probabilistic approach of
model uncertainties for predictive models in structural dynamics; (4) a summary of the random matrix
ensembles which are necessary for the non-parametric modelling of random uncertainties; (5) the
estimation of the dispersion parameters of the non-parametric probabilistic model using experimental data;
(6) the method to solve the stochastic equation of the dynamical system with non-parametric probabilistic
model of random uncertainties; (7) a numerical simulation and the validation for the simple example.
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1. Introduction

In structural dynamics, a predictive model is constructed by developing a mathematical–me-
chanical model of a designed system in order to predict the response of the real system which is the
manufactured system realized from the designed system. The mathematical–mechanical modelling
process of the designed system introduces two fundamental types of uncertainties: the data
uncertainties and the model uncertainties. Uncertainties have to be taken into account for
improving the predictability of the model.
Data uncertainties concern the parameters of the mathematical–mechanical model such as the

geometrical parameters, the boundary conditions, the elasticity tensor of the constitutive
equation, etc. The best approach to take into account data uncertainties is the parametric
probabilistic approach which consists in modelling the parameters of the model by random
quantities such as vector-valued random variables or stochastic fields. In this context, general
methods for computational stochastic mechanics can be found in Ref. [1]. The most important
computational stochastic tool for random continuous media and for continuous stochastic
systems is the stochastic finite element method introduced in Refs. [2,3], whose general
developments can be found in Refs. [4–7] and for which non-gaussian aspects are introduced in
Refs. [8,9]. The parametric probabilistic approach can be used in low-frequency dynamics, in
particular for random eigenvalue problems of large random systems [10,11], and also in medium-
frequency dynamics [12,13].
Model uncertainties cannot be modelled by using the parametric probabilistic approach.

Recently, a general non-parametric probabilistic approach of model uncertainties for dynamical
systems has been proposed using the random matrix theory. The objective of this paper is to give a
comprehensive overview of this approach in developing its foundations in simple terms and in
illustrating all the concepts and the tools introduced in the general theory, by using a simple
example. Such an approach has been introduced in the context of model uncertainties for linear
dynamical systems. The bases of this theory can be found in Refs. [14,15]. Some complements
concerning the random eigenvalue problems are given in Ref. [16]. The case of non-homogeneous
model uncertainties in complex dynamical systems has been studied in Ref. [17], the case of
uncertain dynamical systems in the medium-frequency range is presented in Ref. [18] and the case
of the dynamic response of mistuned bladed disks is analysed in Ref. [19]. For transient dynamics
and for frequency dynamics of dynamical systems with model uncertainties, numerical validations
can be found in Refs. [16,20], respectively, and experimental validations can be found in
Refs. [21,22], respectively. An extension of this non-parametric probabilistic approach of model
uncertainties for nonlinear dynamical systems is introduced in Ref. [23] and an application to
transient nonlinear dynamics of uncertain dynamical systems with elastic stops can be found in
Ref. [24]. Finally, Ref. [25] introduces (1) two additional sets of random matrices useful for fluid-
structure interaction problems in the field of elastoacoustics and (2) a methodology for
performing the experimental identification of the non-parametric probabilistic approach.
Section 2 deals with notions of designed systems, real systems, mean models as predictive

models, errors and uncertainties. In Section 3, a simple example is defined in linear elastodynamics
and allows the notions introduced in Section 2 to be illustrated. Section 4 is devoted to a
comprehensive overview of the non-parametric probabilistic approach of model uncertainties for
predictive models in structural dynamics. The foundations and concepts are presented in simple
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terms by using the simple example defined in Section 3. Section 5 deals with a summary of the
random matrix ensembles which are necessary for the non-parametric modelling of random
uncertainties. Section 6 is devoted to the estimation of the dispersion parameters of the non-
parametric probabilistic model. The method to solve the stochastic equation of the dynamical
system with the non-parametric probabilistic model of random uncertainties is presented in
Section 7. Finally, in Section 8, one presents a numerical simulation and a validation of the theory
for the simple example presented in Sections 3 and 4.
1.1. Comments concerning notation used

In this paper, the following notations are used:
(1)
 A lower case letter is a real or complex deterministic variable (e.g. f ).

(2)
 A boldface lower case letter is a real or complex deterministic vector (e.g. f ¼ ðf 1; . . . ; f nÞ.

(3)
 An upper case letter is a real or complex random variable (e.g. F).

(4)
 A boldface upper case letter is a real or complex random vector (e.g. F ¼ ðF1; . . . ;FnÞ).

(5)
 An upper case letter between brackets is a real or complex deterministic matrix (e.g. ½A�).

(6)
 A boldface upper case letter between brackets is a real or complex random matrix (e.g. ½A�).

(7)
 Any deterministic quantities above (e.g. f ; f; ½A�) with an underline (e.g. f ; f; ½A�) means that

these deterministic quantities are related to the mean model (or to the nominal model).

(8)
 The overline means the conjugate of a complex variable.
2. Errors and uncertainties in a predictive model of a real system

In this section, one introduces the design system, the real system, the mean model as a predictive

model and the notion of errors and uncertainties related to the mean model.
2.1. The designed system

In the context of engineering mechanics, the designed system is the mechanical system
conceived by the designers and analysts. A designed system is defined by geometrical parameters,
by the choice of materials and many other parameters. A designed system can be a very simple
mechanical system such as an elastic bar or a very complex system such as an aircraft.
2.2. The real system

The real system is the manufactured system realised from the designed system. Consequently,
the real system is a man-made-physical system which is never exactly known (for instance, the
geometry does not exactly coincide with the geometry of the designed system). The real system has
then to be considered as an uncertain system with respect to the designed system. Uncertainties do
not only affect the geometry, but also the boundary conditions, the materials, the mass density
distribution, etc.
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(A) Complex real system: Generally, for a complex real system (such an aircraft for instance),
only one manufactured system can be considered as available to perform experiments in order to
reduce the level of uncertainties that exist in the real system with respect to the designed system. It
should be noted that, even if such experiments can be performed, a complex real system is always
under observable which means that only a few information can be deduced from experiments for
reducing the level of uncertainties with respect to the knowledge of the designed system.
(B) Simple real system: Sometimes, for a simple real system, several manufactured systems

Sðy1Þ; . . . ;SðynÞ can be obtained from the same designed system. Then, if the number n of real
systems is sufficiently high, then the mathematical statistics [26] can be used for estimating a
probabilistic model of the real system in order to characterize the uncertainties with respect to the
designed system. In such a case, Sðy1Þ; . . . ;SðynÞ have to be considered as n independent
realizations of a unique unknown random systemS. Nevertheless, the real system is always under
observation and consequently, the probabilistic model of any parameters cannot be correctly
estimated. This means that the uncertainties of the real system with respect to the knowledge of
the designed system cannot be completely suppressed.
(C) Simple or complex real system: It can be concluded that, for a simple or a complex real system,

the statistical estimation of random systemS has to be considered as not realistic and therefore, the
real system has to be considered as an uncertain system with respect to the designed system.
2.3. The mean model as a predictive model: Errors and uncertainties

The objective of the predictive model is to predict the output vexp of the real system for a given
input fexp. For instance, the predictive model will be developed to predict the static displacement
field of a static system subjected to a given external static load or, will be developed to predict the
transient displacement field of a dynamical system subjected to an external impulsive load induced
by a shock. Such a predictive model is constructed by developing a mathematical–mechanical
model of the designed system for a given input (see Fig. 1). Consequently, the mean model has an
input f modelling fexp, an output v modelling vexp and exhibits a parameter s for which data have
to be given (it should be noted that the parameter can be a real number, a real vector, a real
function, a field, a vector-valued function, etc.).
(A) Errors: The errors are related to the construction of an approximate output vn of output v of

the mean model for a given input f and for a given parameter s. For instance, if the mean model is
  system
Designed

Mean model

predictive model
of the real system

as the

s

f v

Real system
as the 

manufactured
system

Uncertain system

vf
exp exp

Mathematical−mechanical
modelling processprocess

Manufacturing

Fig. 1. Designed system, real system and mean model as the predictive model of the real system.
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a boundary value problem (BVP) defined on a bounded domain, the use of the finite element
method [27] for constructing a n-dimensional space approximation of the BVP solution, introduces an
error k v�vnk related to the finite element mesh size, where k � k is an appropriate norm. If a
dynamical problem is studied, the use of a time integration scheme introduces an additional error
related to the time sampling and to the time step. Errors have to be reduced and controlled using
adapted methods developed in applied mathematics and in numerical analysis [28].
(B) Uncertainties: Below, input f and parameter s related to the mean model will be called the

data of the mean model. The mathematical–mechanical modelling process of the designed system
introduces two fundamental types of uncertainties: the data uncertainties and the model
uncertainties.
(B.1) Data uncertainties: Input f of the mean model does not exactly represent input fexp of the

real system and, there are uncertainties on parameter s of the mean model. For instance, a static
load represented by a point force is an approximation of the reality; the use of a given value of the
Young modulus for a given elastic material is not an exact value (which is unknown), but
corresponds to an uncertain value; the elastic constants of a complex joint between two
substructures are uncertain, etc. Data uncertainties have to be taken into account for improving
the predictability of the mean model. The best approach to take into account data uncertainties is
the parametric probabilistic approach consisting in modelling the data of the mean model by
random quantities (see Section 1).
(B.2) Model uncertainties: The mathematical–mechanical modelling process used for

constructing the mean model induces model uncertainties with respect to the designed system.
This type of uncertainties is mainly due to the introduction of simplifications in order to decrease
the complexity of the mean model which is constructed. For instance, a slender cylindrical elastic
medium will be modelled using the beam theory (such as an Euler or a Timoshenko beam), a thick
rectangular plate elastic medium will be modelled by using the thick plate theory (such as the
Midlin plate theory), a complex joint constituted of an assemblage of several plates attached
together by lines of bolts will be modelled by an equivalent homogeneous orthotropic plate, etc. It
is clear that the introduction of such simplified models yields a mean model whose variations of
parameter s do not allow the model uncertainties to be reduced. Model uncertainties have to be
taken into account for improving the predictability of the mean model. As explained above, the
parametric probabilistic approach cannot be used (this point will be revisited in Section 4). This is
the reason why a non-parametric probabilistic approach is proposed.
(C) Predictability of the mean model: The error between the prediction vn calculated with the

mean model and the response vexp of the real system can be measured by kvexp � vnk. Clearly, the
mean model can be considered as a predictive model if this error is sufficiently small. In general,
due to data uncertainties and model uncertainties, this error is not sufficiently small and has to be
reduced in modelling data uncertainties and model uncertainties.
3. Defining a simple example in linear elastodynamics

In order to simply explain the main ideas of the non-parametric probabilistic approach of
model uncertainties for predictive models, a very simple example is introduced in the field of linear
elastodynamics.
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3.1. The designed system

The designed system is a slender cylindrical elastic medium O defined in a cartesian coordinate
system ðOxyzÞ (see Fig. 2). The cylinder has a rectangular section whose height and width are h2
and h3, respectively. The length is h1 such that h25h1 and h35h1. One then has

O ¼ ðx; y; zÞ; x 2 �0; h1½; y 2

�
�

h2
2
;
h2
2

�
; z 2

�
�

h3
2
;
h3
2

�� �
. (1)

The elastic medium is made of a composite material. This structure is simply supported as shown
in Fig. 2. The other parts of the boundary qO of domain O are free.
3.2. The real system

Fig. 3 shows the real system corresponding to the designed system defined in Fig. 2. There are
uncertainties on the geometry due to the manufacturing tolerances. The domain of the real system
is ORS which differs from O. The simply supported conditions are not exactly realized and the
composite material does not exactly correspond to the given specifications of the designed system.
This real system is excited by a frequency-dependent pressure field pexpðoÞ which is constant in
o

z

x

y

h1

h2

h3

Fig. 2. Simple example of a designed system: linear elastodynamics of a slender 3D elastic medium.

o

z

x

y

Manufactured composite material
differing from the designed composite material

with respect to the designed system
Uncertain boundary conditions

manufacturing tolerances
Uncertain geometry due to

Pressure field
exp

applied on surface 
RS

 Γ
p

Fig. 3. Simple example of a real system: manufactured system from the designed system defined in Fig. 2.
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space on the part GRS of the boundary qORS such that

GRS ¼ ðx; y; zÞ; x 2�x0 � �;x0 þ �½; y ¼
h2
2
; z 2 � � �;þ�½

� �
. (2)

Let B be the frequency band of analysis defined by

B ¼�0;omax�; 0oomaxoþ1. (3)

We are interested in the dynamics of the real system in frequency band B, induced by pressure
field excitation pexpðoÞ applied on GRS and in particular, in observing the component
vexpðx; y; z;oÞ of the displacement field ðuexp; vexp;wexpÞ on the line defined by fðx; 0; 0Þ; x 2 ½0; h1�g.

3.3. The mean model as a predictive model

The mean model, as the predictive model of the real system defined in Fig. 3, is constructed
from the designed system defined in Fig. 2. This mean model is constituted of a damped
homogeneous Euler elastic beam with length h1, simply supported at x ¼ 0 and h1 (see Fig. 4).
Assuming that 2�=h151, pressure field pexpðoÞ on GRS is modelled by a point force ð0; gðoÞ; 0Þ
located at x0, such that

gðoÞ ¼ �

Z
GRS

pexpðoÞds ¼ �4�2pexpðoÞ; o 2 B. (4)

Therefore, the mean model input f modelling fexp is the force field ð0; gðoÞd0ðx � x0Þ; 0Þ. For o in
B, this external force induces flexural vibrations in the plane ðOxyÞ for which the transversal
displacement (following Oy) is noted vðx;oÞ. Consequently, for all o fixed in B, the mean model is
defined by the following BVP consisting in finding fvðx;oÞ; x 2 �0; h1½g, such that

�o2r
‘

vðx;oÞ � io2 x
ffiffiffiffiffiffiffiffi
r
‘

k
q q2 vðx;oÞ

qx2
þ k

q4 vðx;oÞ
qx4

¼ gðoÞd0ðx � x0Þ; x 2 �0; h1½, (5)

vð0;oÞ ¼ vðh1;oÞ ¼
q2 vð0;oÞ

qx2
¼

q2 vððh1;oÞ
qx2

¼ 0, (6)
h1

o

y

z

x

g (ω) v (x,ω)

x0

Fig. 4. Simple example of a mean model: predictive model of the real system resulting from the designed system defined

in Fig. 2.
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in which k ¼ y j is the mean flexural stiffness modulus, j ¼ h3h
3
2=12 is the mean inertia moment of

the beam section around axis Oz, y is the mean Young modulus, r
‘
¼ r h2h3 is the mean mass

density by unit of length, r is the mean mass density, i ¼
ffiffiffiffiffiffiffi
�1

p
, x is the mean critical damping rate.

3.4. Frequency response approximation constructed using the mean reduced model

For all o fixed in B, the approximation vnðx;oÞ of frequency response vðx;oÞ of the mean model
can then be constructed by using the following mean reduced model deduced from the usual
modal analysis:

vnðx;oÞ ¼
Xn

a¼1

q
a
ðoÞvaðxÞ; x 2 �0; h1½, (7)

in which qnðoÞ ¼ ðq
1
ðoÞ; . . . ; q

n
ðoÞÞ is the complex vector of the generalized coordinates which is

the unique solution of the complex matrix equation,

ð�o2½Mn� þ io½Dn� þ ½Kn�Þq
nðoÞ ¼ fnðoÞ; o 2 B. (8)

In Eq. (8), generalized mass, damping and stiffness matrices ½Mn�, ½Dn� and ½Kn� of the mean
model are diagonal ðn � nÞ real matrices, such that

½Mn�ab ¼ r
‘
dab; ½Dn�ab ¼ 2 x r

‘
oadab; ½Kn�ab ¼ r

‘
o2adab (9)

with daa ¼ 1 and dab ¼ 0 if aab, and where 0oo1o � � �oon are the eigenfrequencies of the mean
system such that

oa ¼

ffiffiffiffiffi
k

r
‘

s
ap
h1


 �2
; a ¼ 1; 2; . . . ; n. (10)

These eigenfrequencies are associated with the eigenmodes v1ðxÞ; . . . ; vnðxÞ defined by

vaðxÞ ¼

ffiffiffiffiffi
2

h1

s
sin

ap
h1

x


 �
; a ¼ 1; 2; . . . ; n (11)

with the orthogonality properties
R h1
0 vaðxÞvbðxÞdx ¼ dab. Finally, fnðoÞ is the complex vector of

the generalized forces, such that fnðoÞ ¼ ðf
1
ðoÞ; . . . ; f

n
ðoÞÞ in which

f
a
ðoÞ ¼ gðoÞvaðx0Þ; a ¼ 1; 2; . . . ; n. (12)

3.5. Errors related to the use of a mean reduced model

As explained in Section 2.3 (A), the mean model error is due to the use of the approximation
vnðx;oÞ of vðx;oÞ for predicting vexpðx;oÞ and can be measured by estimating the following
norm:

k v�vnk ¼

Z
o2B

Z h1

0

j vðx;oÞ � vnðx;oÞj2 dxdo
� �1=2

. (13)
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It can be seen that k v�vnk2 ¼
Pþ1

a¼nþ1

R
B
jq

a
ðoÞj2 do and, if o 7! gðoÞ is a bounded function on

B, then it can be proved that

lim
n!þ1

k v�vnk ¼ 0. (14)

Eq. (14) shows that the error can be reduced as much as it is desired. Below, it is assumed that n is
chosen sufficiently large for that the error can be considered as negligible with respect to data
uncertainties and model uncertainties. It should be noted that a similar reasoning can be used if
the finite element analysis is used for constructing an approximation of the solution of the BVP
defined by Eqs. (5) and (6).
3.6. Predictability of the mean model and updating with experimental data

For a sufficiently large value of n, the predictability level of the mean model can be measured in
estimating the norm kvexp � vnk such that

kvexp � vnk2 ¼

Z
o2B

Z h1

0

jvexpðx; 0; 0;oÞ � vnðx;oÞj2 dxdo. (15)

From Eqs. (5) and (6), it can be seen that there are m ¼ 6 independent positive-valued parameters
which are h1, h2, h3 for the geometry, y and x for the constitutive equation, r for the mass density.
Consequently, parameter s is such that

s ¼ ðh1; h2; h3; y; x; rÞ 2 Dm � Rm, (16)

in which Dm is the subset of R
m such that

Dm ¼ �0;þ1½� � � � ��0;þ1½ mtimes. (17)

Approximation vn of vexp depends on s 2 Dm and is then rewritten as vn
s ðx;oÞ. Let us assume that

the available experimental data allow vexpðx; 0; 0;oÞ to be known for x 2 �0; h1½ and o 2 B (in fact,
it is known for a finite set of discrete values of x and o). In this condition, the nominal value s of
the parameter can be updated in a value s allowing the predictability of the mean model to be
increased, that is to say, such that

kvexp � vn
sk ¼ min

s2Dm

kvexp � vn
sk. (18)

Below, in order to simplify the notation, s is rewritten as s. Consequently, s will represent the
nominal value of the parameter or its updated value using the experimental data (if these data are
available, that is not always the case, in particular for the complex dynamical systems). It should
be noted that error kvexp � vn

sk is generally not sufficiently small due to data uncertainties and
particularly, due to model uncertainties. Therefore, the predictability of the nominal mean model
(the mean model with the nominal value of the parameter) or the predictability of the updated
mean model (the mean model with the updated value of the parameter) is not sufficient and has to
be improved by using a probabilistic approach of uncertainties.
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3.7. Predictability level in terms of the generalized matrices of the mean reduced model

Let ½Mexp
n �, ½Dexp

n � and ½Kexp
n � be the positive-definite symmetric ðn � nÞ real generalized matrices

of the real system (experimental generalized matrices) corresponding to generalized matrices ½Mn�,
½Dn� and ½Kn� of the mean reduced model. These matrices cannot directly be identified using
experimental modal analysis [29,30], but correspond to a transformation of the experimentally
identified matrices by a transformation depending on the experimental elastic modes and on the
elastic modes of the mean model (see Section 6). The predictability level of the mean model can
then also be measured by comparing matrices ½Mexp

n �, ½Dexp
n � and ½Kexp

n � with matrices ½Mn�, ½Dn�

and ½Kn�, respectively. Consequently, one has to introduce norms of matrices. Let ½An� be a ðn � nÞ
real matrix. The Frobenius norm and the matrix norm of matrix ½An� are defined by

k½An�kF ¼ ðtrf½A�T½A�gÞ
1=2; k½An�k ¼ max

b2Rn;kbk¼1
k½An� bk (19)

and verify the following inequalities:

k½An�kpk½An�kFp
ffiffiffi
n

p
k½An�k, (20)

in which kbk2 ¼ b21 þ � � � þ b2n is the Euclidean norm of b ¼ ðb1; . . . ; bnÞ in R
n. Noting A asM, D or

K, one has

k½An� � ½Aexp
n �kpk½An� � ½Aexp

n �kF , (21)

which shows that the norm k½An� � ½Aexp
n �kF allows the distance (between matrix ½An� of the

nominal or updated mean model with matrix ½Aexp
n � of the real system) to be estimated. Due to

data and model uncertainties, for the generalized mass, damping or stiffness matrix, this distance
is not sufficiently small and has to be reduced by using a probabilistic model of uncertainties.
4. Foundations of the non-parametric probabilistic approach of model uncertainties

The objective of this section is to explain the main ideas and the foundations of the non-
parametric probabilistic approach for data and model uncertainties, using the simple example
presented in Section 3. In a first part, one recalls the usual parametric probabilistic approach of
data uncertainties and one investigates the limitation of such an approach to take into account
model uncertainties. In a second step, the non-parametric probabilistic approach is introduced
and it is shown that the random matrix theory has to be used to obtain a constructive approach.
4.1. Algebraic notations

(A) Euclidean space: Let x ¼ ðx1; . . . ; xnÞ be a vector in Rn. The Euclidean space Rn is equipped
with the usual inner product ðx; yÞ7!hx; yi ¼

Pn
j¼1 xjyj and the associated norm kxk ¼ hx;xi1=2.

(B) Matrix sets: LetMn;mðRÞ be the set of all the ðn � mÞ real matrices,MnðRÞ ¼ Mn;nðRÞ be the
set of all the square ðn � nÞ real matrices, MS

n ðRÞ be the set of all the ðn � nÞ real symmetric
matrices, Mþ0

n ðRÞ be the set of all the ðn � nÞ real symmetric semipositive definite matrices and
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Mþ
n ðRÞ be the set of all the ðn � nÞ real symmetric positive-definite matrices. We then have

Mþ
n ðRÞ � Mþ0

n ðRÞ � MS
n ðRÞ � MnðRÞ. (22)

4.2. Probability distribution of a symmetric random matrix

Let ½An� be a random matrix with values in MS
n ðRÞ which means that ½An�

T ¼ ½An�. The
probability distribution P½An� of random matrix ½An� is defined by a probability density function
½An�7!p½An�

ð½An�Þ from MS
n ðRÞ into Rþ ¼ ½0;þ1½, with respect to the measure (volume element)edAn on MS

n ðRÞ, if

P½An�ð
edAnÞ ¼ p½An�

ð½An�Þ
edAn. (23)

Volume element edAn on MS
n ðRÞ is defined (see [14]) byedAn ¼ 2nðn�1Þ=4

Y
1pipjpn

d½An�ij, (24)

in which d½An�ij is the Lebesgue measure on R for real variable ½An�ij. The normalization condition
is then written as Z

MS
n ðRÞ

p½An�
ð½An�Þ

edAn ¼ 1. (25)

For instance, the Gaussian Orthogonal Ensemble (GOE) of random matrices is constituted of
random matrices ½An� for which the probability density function is written as
p½An�

ð½An�Þ ¼ Cn � expð�l trf½An�
2gÞ, in which l is a positive constant and Cn is the normalization

constant which is calculated by using Eq. (25) and an adapted algebraic method (see for instance
Refs. [16,34]). Let S ¼ ðS1; . . . ;SmÞ be a random vector with values in Rm whose probability
distribution PSðdsÞ on Rm is defined by a probability density function s 7!pS ðsÞ with respect to
ds ¼ ds1 . . .dsm, that is to say PSðdsÞ ¼ pSðsÞds. Let s 7! ½anðsÞ� be a given function from Rm into
MS

n ðRÞ, such that ½An� ¼ ½anðSÞ� is a second-order random matrix with values in MS
n ðRÞ that is to

say such that Efk½An�k
2
F goþ1 in which E is the mathematical expectation. Then, the probability

distribution P½An�ð
edAnÞ on MS

n ðRÞ of random matrix ½An� is defined by a probability density
function p½An�

ð½An�Þ with respect to edAn and

Efk½An�k
2
F g ¼

Z
MS

n ðRÞ

k½An�k
2
F p½An�

ð½An�Þ
edAn ¼

Z
Rm

k½anðsÞ�k
2
F pSðsÞds. (26)

4.3. Parametric probabilistic approach

Consider the example presented in Section 3. The parametric probabilistic approach of data
uncertainties consists in modelling parameter s in Dm (with m ¼ 6, see Eqs. (16) and (17)) by an
Rm-valued second-order random variable S ¼ ðS1; . . . ;S6Þ with

S1 ¼ H1; S2 ¼ H2; S3 ¼ H3; S4 ¼ Y ; S5 ¼ X; S6 ¼ R, (27)

whose support of its probability distribution PSðdsÞ is Dm. From Eqs. (7) to (11), it can be
deduced that, for x fixed in �0; h1½ and for o fixed in B, approximation vnðx;oÞ of frequency
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response vðx;oÞ of the mean model becomes a complex-valued random variable Vn
parðx;oÞ, such

that

Vn
parðx;oÞ ¼

Xn

a¼1

Qpar
a ðoÞVpar

a ðxÞ; x 2 �0; h1½, (28)

in which Vpar
a ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2=S1

p
sinðapx=S1Þ. The C

n-valued random variable Qn
parðoÞ ¼ ðQ

par
1 ðoÞ; . . . ;

Qpar
n ðoÞÞ has to verify the following random equation:

ð�o2½Mpar;n� þ io½Dpar;n� þ ½Kpar;n�ÞQ
n
parðoÞ ¼ fnðoÞ; o 2 B, (29)

where fnðoÞ is defined by Eq. (12). The generalized mass, damping and stiffness random matrices
½Mpar;n�, ½Dpar;n� and ½Kpar;n� are defined by

½Mpar;n� ¼ ½mnðSÞ�; ½Dpar;n� ¼ ½dnðSÞ�; ½Kpar;n� ¼ ½knðSÞ�, (30)

in which the functions s 7! ½mnðsÞ�, s 7! ½dnðsÞ� and s 7! ½knðsÞ� from Dm intoMþ
n ðRÞ, are defined by

½mnðsÞ�ab ¼ mðsÞdab; ½dnðsÞ�ab ¼ 2s5mðsÞoaðsÞdab; ½knðsÞ�ab ¼ mðsÞoaðsÞ
2 dab, (31)

in which s ¼ ðs1; . . . ; s6Þ, mðsÞ ¼ s2s3s6, with

s1 ¼ h1; s2 ¼ h2; s3 ¼ h3; s4 ¼ y; s5 ¼ x; s6 ¼ r, (32)

and where

oaðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s4s3s

2
2

12s6s1

s
ap
s1


 �2
¼ cparðsÞa2; aX1, (33)

in which cparðsÞ is defined by the first Eq. (33). The random eigenfrequencies associated with the
random elastic modes fVpar

a ðxÞ; a ¼ 1; . . . ; ng are fOa ¼ oaðSÞ; a ¼ 1; . . . ; ng.
(A) Fundamental properties of the generalized random matrices: Noting A asM, D or K, and a as

m, d or k, since for all s 2 Dm, matrix ½anðsÞ� belongs to Mþ
n ðRÞ, it can be deduced that random

matrix ½Apar;n� ¼ ½anðSÞ� (see Eq. (30)) is such that

½Apar;n� 2 Mþ
n ðRÞ almost surely. (34)

In addition, it can be proved (see Refs. [15,23]) that, for all o fixed in B, the random Eq. (29) has a
unique second-order random solution Qn

parðoÞ if and only if one has

Efk½Apar;n�
�1k2F goþ1. (35)

Eqs. (34) and (35) define the two fundamental properties for random matrices ½Mpar;n�, ½Dpar;n� and
½Kpar;n�.
(B) Ranges of the mappings defining the generalized random matrices: LetApar;n be the range of

mapping s 7! ½anðsÞ� from Dm � Rm into Mþ
n ðRÞ, that is to say,

Apar;n ¼ f½An� 2 Mþ
n ðRÞ; ½An� ¼ ½anðsÞ� for s 2 Dmg. (36)

Clearly, one has

Apar;n � Mþ
n ðRÞ, (37)
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in which Apar;n is a smaller set than Mþ
n ðRÞ because, for any s in Dm, ½An� ¼ ½anðsÞ� is a diagonal

matrix in Mþ
n ðRÞ (see also next Section (C)).

(C) Non-capability of the parametric approach to span any positive values of the eigenfrequencies:
First, it should be noted that f½anðsÞ�; x 2 Dmg does not coincide with the set of all the diagonal
matrices in Mþ

n ðRÞ. Instead of giving an additional proof of this fundamental property, let us
concentrate the developments on the difficulties of the parametric approach to represent any
model uncertainty. When parameter s ¼ ðh1; h2; h3; y; x;rÞ runs through all the possible values of
vector s in Dm, the eigenfrequencies of the dynamical system are given by Eq. (33). Let DaðsÞ ¼

oaþ1ðsÞ � oaðsÞ be the distance between two successive eigenfrequencies. One then has DaðsÞ ¼

ð2aþ 1Þ cparðsÞ and consequently, the spacing rate distribution daðsÞ ¼ Daþ1ðsÞ=DaðsÞ is such that

daðsÞ ¼ 1þ
2

2aþ 1
; aX1. (38)

Eq. (38) shows that daðsÞ is independent of s and, therefore, when s runs through Dm, any spacing
rate distribution fdaðsÞ; aX1g cannot be spanned by the parametric approach. However, it can
clearly be seen that model uncertainties can lead the spacing rate distribution to be different. For
the simple example considered, the eigenfrequencies of the 3D elastic body defined in Fig. 2 does
not have the spacing rate distribution defined by Eq. (38).
(D) Probability distribution of the generalized random matrices: Let Apar;n be the range of

mapping s 7! ½anðsÞ� defined in Section 4.3 (B). The probability distribution P½Apar;n� of random
matrix

½Apar;n� ¼ ½anðSÞ�, (39)

is then the image of probability distribution PS on Dm by the mapping s 7!½anðsÞ� from Dm onto
Apar;n and consequently, is a probability distribution onApar;n � Mþ

n ðRÞ. Probability distribution
PS and then, probability distribution P½Apar;n�, have to be such that Eq. (35) holds, i.e.,

Efk½Apar;n�
�1k2F g ¼

Z
Dm

k½anðsÞ�
�1k2F PSðdsÞ

¼

Z
Apar;n

k½An�
�1k2F P½Apar;n�ð

edAnÞoþ1. ð40Þ

Clearly, the condition defined by Eq. (40) is not satisfied for any probability distribution PSðdsÞ on
Dm. For instance, for A ¼ M and a ¼ m, Eqs. (30) and (31) yield ½Mpar;n�

�1 ¼ ðR H2H3Þ
�1
½In� in

which ½In� is the identity matrix. Therefore, one has Efk½Mpar;n�
�1k2F g ¼ nEfðR H2H3Þ

�2
g.

Assuming that R, H2 and H3 are three independent random variables, one has

Efk½Mpar;n�
�1k2F g ¼ n

Z
R

1

r2
PRðdrÞ

Z
R

1

h22
PH2

ðdh2Þ

Z
R

1

h23
PH3

ðdh3Þ. (41)

For instance, if PRðdrÞ ¼ 1�0;þ1½ðrÞð1=rÞ expð�r=rÞdr, then R is a second-order random variable
with values in �0;þ1½, such that EfRg ¼ r and is invertible almost surely. Nevertheless, the
inverse R�1 is not a second-order random variable because EfR�2g ¼ þ1. In such a case, one has
Efk½Mpar;n�

�1k2F g ¼ þ1. It can be concluded that PSðdsÞ has to satisfy necessary conditions for
Eq. (40) holds for ½Mpar;n�, ½Dpar;n� and ½Kpar;n�. For a complex mechanical system having a large
number of random parameters such as random fields, the construction of a probability model of
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the parameters is not so easy to perform in order to preserve the property defined by Eq. (40)
which, however, has absolutely to be satisfied.
(E) Probability of the stochastic model with the parametric probabilistic approach of random

uncertainties: Similar to Eq. (15), the predictability of the stochastic model defined by Eqs. (28)
and (29) can be measured by the norm ;vexp � Vn

par; such that

;vexp � Vn
par;

2
¼

Z
o2B

Z h1

0

Efjvexpðx; 0; 0;oÞ � Vn
parðx;oÞj

2gdxdo. (42)

As explained in Section 3.7, the predictability level of the stochastic model can also be evaluated in
comparing the generalized random matrices of the random reduced model with the corresponding
matrices for the real system estimated from experiments. Consequently, the following norm
(square of the norm) allows the distance between random matrix ½Apar;n� ¼ ½anðSÞ� and matrix
½Aexp

n � of the real system to be calculated

Efk½Apar;n� � ½Aexp
n �k2F g ¼

Z
Dm

k½anðsÞ� � ½Aexp
n �k2F PSðdsÞ

¼

Z
Apar;n

k½An� � ½Aexp
n �k2F P½Apar;n�ð

edAnÞoþ1. ð43Þ

Clearly, matrix ½Aexp
n � relative to the real system belongs to set Mþ

n ðRÞ but, due to model
uncertainties, ½Aexp

n � does not generally belong to subset Apar;n � Mþ
n ðRÞ (see Fig. 5) and the

mean-square error defined by Eq. (43) is then not sufficiently small.
4.4. Introduction of the non-parametric probabilistic approach

As previously,M, D or K (mass, damping of stiffness generalized matrix) are denoted as A. The
problem is then to introduce a non-parametric probabilistic approach of data uncertainties and
model uncertainties in order to increase the predictability of the model, for instance, in reducing
the mean-square error defined by Eq. (43).
Fig. 5. The setApar;n is a subset ofM
þ
n ðRÞ, the matrix ½A

exp
n � belongs toMþ

n ðRÞ but, due to model uncertainties, ½A
exp
n �

does not belong to Apar;n.
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(A) Non-parametric probabilistic approach: The non-parametric probabilistic model of random
uncertainties consists in substituting each random diagonal matrix ½Apar;n� in Eq. (29) by a full
random matrix ½An� whose probability distribution P½An�ð

edAnÞ is directly constructed by using the
available information deduced from the mean reduced model defined by Eqs. (7) to (12), instead
of constructing the probability distribution as the image of probability distribution PS by
mapping s7!½anðsÞ�. Therefore, from Eqs. (7) and (8), it is deduced that the non-parametric
probabilistic model of random uncertainties is written as

Vnðx;oÞ ¼
Xn

a¼1

QaðoÞvaðxÞ; x 2 �0; h1½, (44)

ð�o2½Mn� þ io½Dn� þ ½Kn�ÞQ
nðoÞ ¼ fnðoÞ; o 2 B. (45)

(B) Available information for each random generalized matrix: With the non-parametric
probabilistic approach, it is assumed that the mean reduced model defined in Section 3.4
constitutes the fundamental available information. Taking into account the algebraic properties
defined by Eqs. (34) and (35), the following available information for each random generalized
matrix ½An� can be deduced:

½An� 2 Mþ
n ðRÞ almost surely, (46)

Ef½An�g ¼ ½An� 2 Mþ
n ðRÞ, (47)

Efk½An�
�1k2F g ¼ coþ1, (48)

in which c is an unknown constant which is positive and finite.
(C) Constructing the probability distribution of the generalized random matrices: The problem is

then to construct probability distribution P½An�ð
edAnÞ on subsetM

þ
n ðRÞ such that Eqs. (46)–(48) are

satisfied. Such a construction has been performed by using the entropy optimization principle (see
Refs. [14,15,25]) and will be summarized in Section 5.
(D) Capability of the non-parametric approach to take into account model uncertainties: The

mean-square error between random matrix ½An� and experimental matrix ½Aexp
n � is given by

Efk½An� � ½Aexp
n �k2F g ¼

Z
Mþ

n ðRÞ

k½An� � ½Aexp
n �k2F P½An�ð

edAnÞoþ1. (49)

Eq. (49) has to be compared to Eq. (43). Since Apar;n � Mþ
n ðRÞ, one can take P½An� ¼ P½Apar;n�,

which means that the support of probability distribution P½An� is Apar;n. In this case, one has
½An� ¼ ½Apar;n� which proves that the non-parametric approach has the capability to model data
uncertainties. In addition, since the support of P½An� isM

þ
n ðRÞ withApar;n � Mþ

n ðRÞ (see Eq. (37)),
the non-parametric probabilistic approach allows a larger class of random matrices to be
constructed and consequently, has, a priori, the capability to take into account model
uncertainties. For instance, let us assume that the model uncertainties are sufficiently high for
that ½Aexp

n �eApar;n (see Fig. 5). Since ½A
exp
n � belongs to Mþ

n ðRÞ, Eq. (49) shows that there exists a
probability distribution P½An� on Mþ

n ðRÞ which allows the mean-square error to be reduced. For
instance, taking P½An�ð

edAnÞ ¼ d0ð½An� � ½Aexp
n �Þ, in which d0 is the Dirac measure on MnðRÞ, leads

the error to be zero because ½Aexp
n � belongs toMþ

n ðRÞ. Of course, P½An� cannot be arbitrarily chosen
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on Mþ
n ðRÞ but has to be constructed using the random matrix theory presented in Section 5.

Consequently and intuitively, it can be assumed that there is a probability measure P½An� onM
þ
n ðRÞ

verifying the properties defined by Eqs. (46)–(48), and such thatZ
Mþ

n ðRÞ

k½An� � ½Aexp
n �k2F P½An�ð

edAnÞo
Z
Apar;n

k½An� � ½Aexp
n �k2F P½Apar;n�ð

edAnÞ, (50)

which means that

Efk½An� � ½Aexp
n �k2F goEfk½Apar;n� � ½Aexp

n �k2F g. (51)
5. Random matrix ensembles for the non-parametric modelling of random uncertainties

As explained in Section 4.4 (C), one has to construct probability distribution P½An�ð
edAnÞ on

Mþ
n ðRÞ verifying Eqs. (46)–(48). This is the objective of this section. One limits the presentation in

giving a summary of the results concerning the two random matrix ensembles that one needs for
treating the simple example introduced in Section 3 and developed in Section 4.4: the set SGþ and
the set SEþ (another ensembles of random matrices useful for the non-parametric probabilistic
approach of random uncertainties can be found in Ref. [25]).
5.1. Normalized positive-definite ensemble SGþ of random matrices

The first ensemble SGþ of random matrices, called the the normalized positive-definite ensemble,
has been constructed (see Refs. [14,15]) in the context of the development of an approach for
modelling random uncertainties in dynamical systems with a non-parametric probabilistic
approach. This ensemble constitutes the main ensemble used for constructing the second ensemble
SEþ. Ensemble SGþ differs from the GOE and from the other known ensembles of the random
matrix theory (for a synthesis of these known ensembles of the random matrix theory, see Ref.
[34]).
(A) Definition of ensemble SGþ: This ensemble is defined as the set of all the random matrices

½Gn�, defined on a probability space ðB;T;PÞ, with values in Mþ
n ðRÞ, whose probability

distribution is constructed by using the entropy optimization principle [31,35] for which the
constraints (define as the available information) are the following (which have to be compared to
the constraints defined by Eqs. (46)–(48)):
(1)
 Matrix ½Gn� is a symmetric positive-definite real random matrix, that is to say,

½Gn� 2 Mþ
n ðRÞ almost surely. (52)
(2)
 The mean value ½Gn� of random matrix ½Gn� is the ðn � nÞ identity matrix ½In�,

Ef½Gn�g ¼ ½Gn� ¼ ½In� 2 Mþ
n ðRÞ. (53)
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(3)
 Random matrix ½Gn� is such that

Eflnðdet½Gn�Þg ¼ v with jvjoþ1. (54)
(B) Dispersion parameter of a random matrix in ensemble SGþ: Let d40 be the real parameter
defined by

d ¼
Efk½Gn� � ½Gn�k

2
F g

k½Gn�k
2
F

� �1=2
¼

1

n
Efk½Gn� � ½In�k

2
F g

� �1=2
, (55)

that allows the dispersion of the probability model of random matrix ½Gn� to be fixed. The
constraint defined by Eq. (54) introduces a free parameter v in the model. Since this parameter v

has no simple meaning, this free parameter v is rewritten in terms of the dispersion parameter d
which is the new free parameter of the model. In Ref. [15], it is proved that the dispersion
parameter of the probability model has to be independent of n, such that

0odo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn þ 1Þðn þ 5Þ�1

q
. (56)

(C) Probability distribution of a random matrix in ensemble SGþ: The probability distribution
P½Gn� of random matrix ½Gn� is defined by a probability density function ½Gn�7!p½Gn�

ð½Gn�Þ from

Mþ
n ðRÞ into Rþ ¼ ½0;þ1½, with respect to the measure edGn on setM

S
n ðRÞ such that (see Eq. (24)),edGn ¼ 2nðn�1Þ=4Q

1pipjpn d½Gn�ij. We then have P½Gn� ¼ p½Gn�
ð½Gn�Þ

edGn with the normalization

condition
R
Mþ

n ðRÞ
p½Gn�

ð½Gn�Þ
edGn ¼ 1. Probability density function p½Gn�

ð½Gn�Þ is then written as

p½Gn�
ð½Gn�Þ ¼ 1Mþ

n ðRÞ
ð½Gn�Þ � CGn

� ðdet½Gn�Þ
ðnþ1Þ

ð1�d2Þ
2d2 � exp �

ðn þ 1Þ

2d2
tr½Gn�

� �
, (57)

in which 1Mþ
n ðRÞ

ð½Gn�Þ is equal to 1 if ½Gn� 2 Mþ
n ðRÞ and is equal to zero if ½Gn�eMþ

n ðRÞ and where

the positive constant CGn
is such that

CGn
¼

ð2pÞ�nðn�1Þ=4
ððn þ 1Þ=2d2Þnðnþ1Þð2d

2
Þ
�1

fPn
j¼1Gððn þ 1Þ=2d2 þ ð1� jÞ=2Þg

, (58)

with GðzÞ the gamma function defined for z40 by GðzÞ ¼
Rþ1

0 tz�1 e�t dt. Eq. (57) shows that

f½Gn�jk; 1pjpkpng are dependent random variables. If ðn þ 1Þ=d2 is an integer, then Eqs.

(57)–(58) show that the probability distribution is a Wishart distribution [32,33]. In general,

ðn þ 1Þ=d2 is not an integer and consequently, the probability distribution is not a Wishart
distribution.
(D) Second-order moments of a random matrix in ensemble SGþ: It can be proved that ½Gn� is a

second-order random matrix: Since ½Gn� ¼ ½In�, the covariance CGn

jk;j0k0 of random variables ½Gn�jk

and ½Gn�j0k0 , defined by CGn

jk;j0k0 ¼ Efð½Gn�jk � ½In�jkÞð½Gn�j0k0 � ½In�j0k0 Þg is written as

CGn

jk;j0k0 ¼
d2

n þ 1
f½In�j0k½In�jk0 þ ½In�jj0 ½In�kk0 g.
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In particular, the variance of random variable ½Gn�jk is

VGn

jk ¼
d2

n þ 1
ð1þ ½In�jkÞ. (59)

(E) Algebraic representation of a random matrix in ensemble SGþ: The following algebraic
representation of random matrix ½Gn� allows a procedure for the Monte Carlo numerical
simulation of random matrix ½Gn� to be defined. With this procedure, the numerical cost induced
by the simulation is a constant that depends on dimension n but that is independent of the values
of parameter d. Random matrix ½Gn� can be written as

½Gn� ¼ ½Ln�
T½Ln�, (60)

in which ½Ln� is an upper triangular random matrix with values in MnðRÞ, such that
(1)
 the random variables f½Ln�jj0 ; jpj0g are independent;

(2)
 for joj0, the real-valued random variable ½Ln�jj0 can be written as ½Ln�jj0 ¼ snUjj0 in which

sn ¼ dðn þ 1Þ�1=2 and where Ujj0 is a real-valued Gaussian random variable with zero mean
and variance equal to 1; ffiffiffiffiffiffiffiffip
(3)
 for j ¼ j0, the positive-valued random variable ½Ln�jj can be written as ½Ln�jj ¼ sn 2Vj in
which sn is defined above and where Vj is a positive-valued gamma random variable whose
probability density function pVj

ðvÞ with respect to dv is written as

pVj
ðvÞ ¼ 1RþðvÞ

1

Gððn þ 1Þ=2d2 þ ð1� jÞ=2Þ
vðnþ1Þ=2d

2
�ð1þjÞ=2 e�v. (61)
(F) Convergence property of a random matrix in ensemble SGþ when dimension goes to infinity: It
is mathematically proved that Efk½Gn�

�1k2F goþ1 and therefore that Efk½Gn�
�1k2goþ1. In

addition, the following fundamental property is proved [15]:

8nX2; Efk½Gn�
�1k2gpCdoþ1, (62)

in which Cd is a positive finite constant that is independent of n but that depends on d. Eq. (62)
means that n 7!Efk½Gn�

�1k2g is a bounded function from fnX2g into Rþ. This fundamental
property is strongly used to prove that the sequence of random fields fx7!Vnðx;oÞgn defined by
Eqs. (44) and (45) has a second-order limit when dimension n of the reduced model goes to infinity
(see Ref. [15]). It should be noted that Eq. (52) shows that random matrix ½Gn� is invertible almost
surely, but since the almost-sure convergence does not yield the mean-square convergence, then an
additional condition has to be introduced to obtain the property defined by Eq. (62). This is the
role played by Eq. (54).
5.2. Positive-definite ensemble SEþ of random matrices

The second ensemble SEþ of random matrices, called the the positive-definite ensemble, has been
constructed in Refs. [14,15], simultaneously with SGþ. This ensemble is used for constructing the
probability model of the generalized mass, damping and stiffness matrices of the reduced model
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for dynamical systems without rigid body displacements. This random matrix ensemble is
required for constructing probability distribution P½An�ð

edAnÞ on Mþ
n ðRÞ verifying Eqs. (46)–(48).

(A) Definition of ensemble SEþ: The ensemble SEþ is defined as the set of all the random
matrices ½An�, defined on probability space ðB;T;PÞ, with values in Mþ

n ðRÞ, having similar
properties that the properties defined by Eqs. (52)–(54), but for which

Ef½An�g ¼ ½An� 2 Mþ
n ðRÞ, (63)

where the mean value of ½An� is a given matrix ½An� inM
þ
n ðR). Since matrix ½An� is positive definite,

there is an upper triangular matrix ½LAn
� in MnðRÞ such that

½An� ¼ ½LAn
�T½LAn

�, (64)

which corresponds to the Cholesky factorization of matrix ½An�. Consequently, ensemble SE
þ is

defined as the set of all the matrices ½An� which are written as

½An� ¼ ½LAn
�T½Gn�½LAn

�, (65)

in which matrix ½Gn� is the random matrix in ensemble SGþ.
(B) Properties of a random matrix in ensemble SEþ: Taking into account Eqs. (52), (53), (59) and

(62), it can be deduced that a random matrix ½An� belonging to SE
þ has the following properties:
(1)
 Matrix ½An� is a symmetric positive-definite real random matrix

½An� 2 Mþ
n ðRÞ almost surely. (66)
(2)
 Matrix ½An� is a second-order random variable

Efk½An�k
2
F goþ1. (67)
(3)
 The mean value of random matrix ½An� is such that

Ef½An�g ¼ ½An� 2 Mþ
n ðRÞ. (68)
(4)
 Random matrix ½An� is such that

Efk½An�
�1k2gpEfk½An�

�1k2F goþ1. (69)
Consequently, a random matrix ½An� belonging to ensemble SE
þ satisfies the constraints defined

by Eqs. (46)–(48). One then has constructed the probability distribution P½An�ð
edAnÞ on Mþ

n ðRÞ

verifying Eqs. (47) and (48). This probability is directly deduced from Eqs. (57) and (65) and can
be found in Refs. [14,15].
(C) Dispersion parameter of a random matrix in ensemble SEþ: The dispersion of random matrix

½An� is controlled by parameter d defined by Eq. (55), verifying Eq. (56), and which is rewritten as
dA40, and which is such that

dA ¼
1

n
Efk½Gn� � ½In�k

2
F g

� �1=2
. (70)
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Parameter, dA, which has to be independent of n and which has to be chosen such that

0odAo
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn þ 1Þðn þ 5Þ�1

q
, (71)

allows the dispersion of the probability model of random matrix ½An� to be fixed. Finally, the
algebraic representation of random matrix ½An� is given by Eq. (65) with Eqs. (60) and (61), and
allows realizations of random matrix ½An� to be numerically constructed.
(D) Probability model of a set of random matrices in ensemble SEþ: Let us consider n random

matrices ½A1n�; . . . ; ½A
n
n� belonging to ensemble SE

þ. This means that the mean values of the random
matrices are known but that no information is available concerning correlation tensor between two
any random matrices such as ½Aj

n� and ½Ak
n�. Then, applying the entropy optimization principle, it can

be proved that the probability density function ð½A1
n�; . . . ; ½A

n
n�Þ 7!p½A1n�;...;½A

n
n�
ð½A1

n�; . . . ; ½A
n
n�Þ from

Mþ
n ðRÞ � � � � �Mþ

n ðRÞ into Rþ with respect to the measure (volume element) edA1
n � � � � � edAn

n on

MS
n ðRÞ � � � � �MS

n ðRÞ is written as

p½A1n�;...;½A
n
n�
ð½A1

n�; . . . ; ½A
n
n�Þ ¼ p½A1n�

ð½A1
n�Þ � � � � � p½An

n�
ð½An

n�Þ, (72)

which means that ½A1n�; . . . ; ½A
n
n� are independent random matrices.
6. Experimental estimation of the dispersion parameters of the non-parametric probabilistic model

Let dM , dD and dK be the dispersion parameters of the random generalized mass, damping and
stiffness matrices. Since the dispersion parameters have to be independent of n (see Section 5.2
(C)), the dispersion parameters can be estimated by using the experimental matrices ½Mexp

n �, ½Dexp
n �

and ½Kexp
n � for a dimension non. Here, a very simple procedure is proposed for estimating dM , dD

and dK (this procedure corresponds to the first step of the procedure based on the maximum
likelihood principle and developed in Ref. [25]. The first step of this procedure consists in
associating with the n first computed elastic modes of the mean model, the corresponding n
experimental elastic modes obtained by performing the experimental modal analysis [29,30] of the
real system. Let 0ooexpj1

p � � �poexpjn
be the set of the n experimental eigenfrequencies

corresponding to the set of the n first computed eigenfrequencies 0oo1p � � �pon of the mean
model. In order to simplify the development, the same set of dof for the mean model and for the
real system is considered, but this assumption can easily be released. Thus, for a given set of m
dof, let ½Cexp

n � be the ðm � nÞ real matrix whose columns are the n experimental elastic modes
associated with eigenfrequencies 0ooexpj1

p � � �poexpjn
and let ½Fn� be the ðm � nÞ real matrix whose

columns are the n first computed elastic modes associated with eigenfrequencies 0oo1p � � �pon.

Let ½ eMexp

n �, ½ eDexp

n � and ½ eKexp

n � be the corresponding experimental generalized mass, damping and

stiffness matrices of the real system directly deduced from the experimental modal analysis of the

real system and such that ½ eMexp

n �ab ¼ mexpja
dab, ½ eDexp

n �ab ¼ 2xexpja
mexpja

oexpja
dab and ½ eKexp

n �ab ¼

mexpja
ðoexpja

Þ
2dab. Let ½Mn�, ½Dn� and ½Kn� be the random matrices associated with the mean reduced

model of dimension n and defined in Section 4.4. Since the experimental elastic modes differ from
the elastic modes constructed with the mean model (due to uncertainties), matrices ½ eMexp

n �, ½ eDexp

n �

and ½ eKexp

n � are not represented in the same vector subspace than ½Mn�, ½Dn� and ½Kn� (or
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equivalently than ½Mn�, ½Dn� and ½Kn�). However, it can be written that

½Cexp
n �eqexp ¼ ½Fn�q

exp, (73)

in which eqexp is the Cm-vector of the experimental generalized coordinates and where qexp is the
corresponding Cm-vector of the generalized coordinates in the mean-model basis. By construction,
the matrix ½Cexp

n �T½Cexp
n � 2 MnðRÞ is invertible. Introducing the left pseudo-inverse

ð½Cexp
n Þ�T½Cexp

n �Þ
�1
½Cexp

n �T 2 Mn;mðRÞ of ½Cexp
n � 2 Mm;nðRÞ, Eq. (73) yieldseqexp ¼ ½Sexpn �qexp, (74)

in which the matrix ½Sexpn � 2 MnðRÞ is written as

½Sexpn � ¼ ð½Cexp
n �T½Cexp

n �Þ
�1
½Cexp

n �T ½Fn�. (75)

The matrix transformation defined by Eqs. (74)–(75) allows the experimental matrices ½ eMexp

n �,
½ eDexp

n � and ½ eKexp

n � to be transformed into the matrices ½Mexp
n �, ½Dexp

n � and ½Kexp
n �, which are defined

by

½Mexp
n � ¼ ½Sexpn �T½ eMexp

n �½Sexpn � 2 Mþ
n ðRÞ,

½Dexp
n � ¼ ½Sexpn �T½ eDexp

n �½Sexpn � 2 Mþ
n ðRÞ,

½Kexp
n � ¼ ½Sexpn �T½ eKexp

n �½Sexpn � 2 Mþ
n ðRÞ. (76)

Noting A as M, D or K, one can then introduce the matrix ½Gexp
n � 2 Mþ

n ðRÞ such that ½A
exp
n � ¼

½LAn
�T½Gexp

n �½LAn
� in which the invertible upper triangular matrix ½LAn

� 2 MnðRÞ is such that
½An� ¼ ½LAn

�T½LAn
� 2 Mþ

n ðRÞ. Therefore, matrix ½Gexp
n � is given by the equation

½Gexp
n � ¼ ½LAn

��T½Aexp
n �½LAn

��1 2 Mþ
n ðRÞ. (77)

Consequently, one realization ½Gexp
n � of random matrix ½Gn� defined by Eq. (65) has effectively

been constructed. Since, only one realization ½Aexp
n � of random matrix ½An� is assumed to be

available and is given by Eq. (76) for A equal to M, D or K, the dispersion parameter dA of
random matrix ½An� which is defined by Eq. (70) can then be estimated by the following equation

dA ’
1

n
k½Gexp

n � � ½In�k
2
F

� �1=2
. (78)

Eq. (78) gives an estimation for the dispersion parameters dM , dD and dK of random matrices

½Mn�, ½Dn� and ½Kn� for any value of n, knowing one realization ½ eMexp

n �, ½ eDexp

n � and ½ eKexp

n � of the real

system resulting from the experimental modal analysis.
7. Solving the stochastic equation of the dynamical system with the non-parametric probabilistic

model of random uncertainties

This section deals with (1) the method for solving the stochastic equation of the dynamical
system with the non-parametric probabilistic model of random uncertainties, (2) the convergence
aspects and (3) the construction of the confidence region of the random frequency response
functions.
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7.1. Solving the stochastic equation

For all o fixed in frequency band B, the stochastic equation (45) has to be solved with the
probabilistic model of random matrices ½Mn�, ½Dn� and ½Kn� defined by Eq. (72) with Eq. (65) and
Eqs. (57)–(58) which defines the probability density function of each random matrix whose
dispersion parameter is defined by Eq. (70). It is assumed that the dispersion parameters dM , dD

and dK of random matrices ½Mn�, ½Dn� and ½Kn� are given and are, for instance, estimated by using
the results presented in Section 6 if experimental data are available.
Due to the properties defined by Eqs. (46)–(48) for each random matrix, it is proved (see

Ref. [15] or [23]) that the family fQnðoÞ;o 2 Bg of random variables verifying Eq. (45) is a second-
order stochastic process. The system of the marginal probability distributions of this stochastic
process can explicitely be written but required the calculation of a very large number of high-
dimension integrals on Rg with g ¼ 3� n � ðn þ 1Þ=2. Consequently, such an approach is not
constructive and is then substituted by the use of the Monte Carlo numerical simulation method
[36] which is very efficient due to the use of a reduced model having a small dimension. Each
independent realizations ½MnðykÞ�, ½DnðykÞ� and ½KnðykÞ� of random matrices ½Mn�, ½Dn� and ½Kn� are
simply constructed by using Eq. (65) and the algebraic representation defined in Section 5.1 (E),
that is to say by using Eq. (60). Consequently, for all o fixed in B, the realization Qnðo; ykÞ is
computed by solving the linear matrix equation

ð�o2½MnðykÞ� þ io½DnðykÞ� þ ½KnðykÞ�ÞQ
nðo; ykÞ ¼ fnðoÞ; o 2 B. (79)

For each x fixed in �0; h1½, the corresponding realization Vnðx;o; ykÞ of the second-order random
variable Vnðx;oÞ defined by Eq. (44) is given by

Vnðx;o; ykÞ ¼
Xn

a¼1

Qaðo; ykÞvaðxÞ, (80)

in which Qnðo; ykÞ ¼ ðQ1ðo; ykÞ; . . . ;Qnðo; ykÞÞ.

7.2. Convergence of the stochastic solution

Let I ¼�0; h1½. The convergence of the stochastic solution Vnðx;oÞ has to be analysed with
respect to the different parameters related to the approximation constructed. The first parameter
is the reduced model dimension n. The convergence of stochastic field fVnðx;oÞ;x 2 I;o 2 Bg
towards a second-order stochastic field fV ðx;oÞ;x 2 I;o 2 Bg when dimension n goes to infinity
can be analysed in introducing the following norm induced by Eq. (13):

;V � Vn; ¼

Z
o2B

Z h1

0

EfjV ðx;oÞ � Vnðx;oÞj2gdxdo
� �1=2

. (81)

Due to the fundamental mathematical property defined by Eq. (62), it can be proved (see
Ref. [15]) that the sequence of second-order stochastic fields fVnðx;oÞ;x 2 I;o 2 BgnX1

converges to a second-order stochastic field fV ðx;oÞ; x 2 I;o 2 Bg when dimension n goes to
infinity for the norm defined by Eq. (81). The second parameter is the number ns of realizations
used for constructing the statistics by the Monte Carlo numerical simulation method. From



ARTICLE IN PRESS

C. Soize / Journal of Sound and Vibration 288 (2005) 623–652 645
Section 3.5 and Eq. (44), it can easily be deduced that

;Vn; ¼

Z
o2B

Xn

a¼1

EfjQn
aðoÞj

2gdo

( )1=2

. (82)

Convergence with respect to dimension n of the reduced model and to number ns of realizations
used in the Monte Carlo numerical method, can then be studied by constructing the following
function:

ðns; nÞ 7!Convðns; nÞ ¼
1

ns

Xns

k¼1

Z
o2B

kQnðo; ykÞk
2 do

( )1=2

. (83)

7.3. Confidence region of the random frequency response functions

It is interesting to construct the confidence region associated with a probability level Pc (by
example, Pc ¼ 0:96) for the modulus fjVnðx;oÞj;o 2 Bg of the random frequency response
function at a given point x fixed in �0; h1½. The confidence region is constructed by using the
quantiles. For n, x and o fixed, let W ðoÞ be the positive-valued random variable such that
W ðoÞ ¼ jVnðx;oÞj. Let FW ðoÞ be the distribution function (continuous from the right) of random
variable W ðoÞ, such that FW ðoÞðwÞ ¼ PðW ðoÞpwÞ. For 0opo1, the pth quantile or fractile of
FW ðoÞ is defined as

zðpÞ ¼ inffw : FW ðoÞðwÞXpg. (84)

Then, the upper envelope wþðoÞ and the lower envelope w�ðoÞ of the confidence region are
defined by

wþðoÞ ¼ zðð1þ PcÞ=2Þ; w�ðoÞ ¼ zðð1� PcÞ=2Þ. (85)

The estimation of wþðoÞ and w�ðoÞ is performed by using the sample quantiles [26]. Let w1ðoÞ ¼
W ðo; y1Þ; . . . ;wns

ðoÞ ¼ W ðo; yns
Þ be the ns independent realizations of random variable

W ðoÞ associated with the independent realizations Vnðx;o; y1Þ; . . . ;Vnðx;o; yns
Þ computed in

Section 7.1. Let ew1ðoÞo � � �oewns
ðoÞ be the order statistics associated with w1ðoÞ; . . . ;wns

ðoÞ.
Therefore, one has the following estimation:

wþðoÞ ’ ewjþðoÞ; jþ ¼ fixðnsð1þ PcÞ=2Þ, (86)

w�ðoÞ ’ ewj�ðoÞ; j� ¼ fixðnsð1� PcÞ=2Þ, (87)

in which fixðzÞ is the integer part of the real number z.
8. Numerical simulation and validation for the simple example in linear elastodynamics

In this section, a numerical simulation of the simple example introduced in Sections 3 and 4 is
presented in order to validate the non-parametric probabilistic approach of model uncertainties.
An ‘‘experimental’’ response of the real system is constructed by numerical simulation using a 3D
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Fig. 6. Finite element mesh of the real system defined in Fig. 3.
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elastodynamic model of the real system and the finite element method with a sufficiently large
number of dof.

8.1. Data for the numerical simulation

(A) Designed system: The data relative to the geometry defined in Section 3.1 are h1 ¼ 10m,
h2 ¼ 1m and h3 ¼ 1:5m. The designed structure is simply supported as shown in Fig. 2.
(B) Real system: The frequency band B is the band �0; 1000�Hz which means that

omax ¼ 2000� p rad=s. The real system (see Fig. 3) is excited by the external load defined in
Section 3.2 with x0 ¼ 4:25m, � ¼ 0:06m and pexpðoÞ ¼ ð4�2Þ�11BðoÞ in which 1BðoÞ ¼ 1 if o 2 B

and 1BðoÞ ¼ 0 if oeB. Concerning the boundary conditions, the displacement field is zero on the
part of the boundary defined by fðx; y; zÞ : x ¼ 0; y 2 � � 0:5;�0:375½; z 2 � � 0:75; 0:75½g and by
fðx; y; zÞ : x ¼ 10; y 2� � 0:5;�0:375½; z 2� � 0:75; 0:75½g.
(C) Mean model: The mean model input defined in Section 3.3 is the point force located at

x ¼ 4:25m with an intensity gðoÞ ¼ �1BðoÞ. The composite material of the designed system is
modelled by a homogeneous isotropic elastic material whose nominal parameters are
y ¼ 1010 N=m2, r ¼ 1700kg=m3 and x ¼ 0:01. The eigenfrequencies of the mean system are
given by Eq. (10) and are such that n1 ¼ 11, n2 ¼ 44, n3 ¼ 99, n4 ¼ 176, n5 ¼ 275, n6 ¼ 396,
n7 ¼ 539, n8 ¼ 704, n9 ¼ 891, n10 ¼ 1100; . . . ; n80 ¼ 70 385Hz.
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Fig. 7. Mean model responses (thin solid lines) compare to the ‘‘experimental’’ responses of the real system (thick solid

lines). For each observation point Pk; k ¼ 1; . . . ; 6, graph of function n 7! log10fjv
nðxk; nÞjg (thin solid line) compare with

the graph of function n 7! log10fjv
expðxk; 0; 0; nÞjg (thick solid line). Horizontal frequency axis n in Hz. Observation

points: P1 (up left figure), P2 (up right figure), P3 (medium left figure), P4 (medium right figure), P5 (down left figure),

P6 (down right figure).
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8.2. Generating an ‘‘experimental’’ response of the real system by numerical simulation

An ‘‘experimental’’ response of the real system is obtained (1) in constructing a 3D elastic
model of the real system defined in Section 8.1 (B), (2) in discretizing the real system by the finite
element method and (3) in solving the equation with the modal analysis. The material is taken as
homogeneous and isotropic with a Young modulus 1010 N=m2, a Poisson coefficient 0.15, a mass
density 1700 kg=m3. The modal damping rates are the realizations of a uniform random variable
on ½0:009; 0:011� whose mean value is 0:01. The finite element mesh is shown in Fig. 6 and is
constituted of 80� 8� 12 ¼ 7680 3D 8-nodes solid elements. There are 9477 nodes and a total of
28 275 dof (due to the boundary conditions, the displacement is zero for 2� 26 nodes). A point
force ð0;�1BðoÞ; 0Þ is applied to the node of coordinates ð4:25; 0:5; 0:75Þ. The finite element
approximation of the displacement field ðuexp; vexp;wexpÞ is computed on frequency band B by
using the modal analysis with the first 150 elastic modes. There are 101 eigenfrequencies in band B
and 49 eigenfrequencies in frequency band ½1000; 1197�Hz. The fundamental eigenfrequency is
nexp1 ¼ 16Hz. There are 14 eigenfrequencies in frequency band ½0; 230�Hz. The eigenfrequencies of
the first 5 flexural modes corresponding to the first 5 elastic modes of the mean model (Euler
beam) and having, respectively, 2–6 nodes (zero Oy-displacement) on the neutral fiber are
nexpj1

¼ 16Hz, nexpj2
¼ 40Hz, nexpj3

¼ 91Hz, nexpj4
¼ 153Hz, nexpj5

¼ 220Hz with j1 ¼ 1; j2 ¼ 3; j3 ¼
7; j4 ¼ 10; j5 ¼ 14 (Fig. 7).
Fig. 9. Confidence region predictions of the stochastic system (gray regions) compare with the mean model responses

(thin solid lines) and with the ‘‘experimental’’ responses of the real system (thick solid lines). For each observation point

Pk; k ¼ 1; . . . ; 6, (1) graphs of functions n 7! log10fw
þ
k ðnÞg and n 7! log10fw

�
k ðnÞg delimiting the confidence region (gray

region) of the stochastic system, (2) graph of function n 7! log10fjv
nðxk; nÞjg (thin solid line) of the mean model response

and (3) graph of function n 7! log10fjv
expðxk; 0; 0; nÞjg (thick solid line) of the ‘‘experimental’’ response of the real system.

Horizontal frequency axis n in Hz. Observation points: P1 (up left figure), P2 (up right figure), P3 (medium left figure),

P4 (medium right figure), P5 (down left figure), P6 (down right figure).
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8.3. Comparison of the mean model prediction with the ‘‘experimental’’ response of the real system

For k ¼ 1; . . . ; 5, the difference between eigenfrequency nexpjk
of the real system and the

corresponding eigenfrequency nk of the mean system are due to the boundary conditions and to
the model error (3D slender elastic body modelled by an Euler beam). In the present case, there is
no real interest in updating the mean model by using ‘‘experimental’’ data related to the real
system. Six observation points P1;P2;P3;P4;P5 and P6 belonging to the line ðx; 0; 0Þ; x 2�0; h1½
(neutral fiber) and located at x1 ¼ 1:875m, x2 ¼ 3:125m, x3 ¼ 4:250m, x4 ¼ 5:000m, x5 ¼
6:375m and x6 ¼ 9:250m, respectively, are considered. Observation point P3 corresponds to the
driven point (excitation point). The frequency response functions are computed on the frequency
band �0; 1000�Hz in 1000 frequency points corresponding to a frequency step 1Hz. For each
observation point Pk, k ¼ 1; . . . ; 6, the frequency response function o 7! vnðxk;oÞ is computed by
using Eqs. (7)–(12) with n ¼ 80, and the ‘‘experimental’’ response o 7! vexpðxk; 0; 0;oÞ is obtained
as explained in Section 8.2. Fig. 7 is related to a given observation point Pk; k ¼ 1; . . . ; 6 and
displays the mean model prediction o 7! log10fjv

nðxk;oÞjg compared with the ‘‘experimental’’
response of the real system o 7! log10fjv

expðxk; 0; 0;oÞjg. Fig. 8 shows that the mean model
predictions are reasonably good for frequencies lower than 120Hz and can locally be very
different for frequencies greater than 120Hz.
8.4. Estimation of the dispersion parameters using the ‘‘experimental’’ response of the real system

An estimation of the dispersion parameters dM , dD and dK of the random generalized mass,
damping and stiffness matrices is performed by using the method presented in Section 6. The

experimental matrices ½ eMexp

n �, ½ eDexp

n � and ½ eKexp

n � are constructed by using the 5 ‘‘experimental’’

elastic modes of the real system computed in Section 8.2 whose ‘‘experimental’’ eigenfrequencies
are foexpjk

¼ 2pnexpjk
; k ¼ 1; . . . ; ng with n ¼ 5on. These ‘‘experimental’’ eigenfrequencies and the

associated ‘‘experimental’’ elastic modes correspond to the eigenfrequencies fok ¼ 2pnk; k ¼

1; . . . ; ng of the first 5 flexural modes of the mean model (Euler beam). The ðm � nÞ real matrix ½Fn�

is constructed by using Eq. (11) for m ¼ 79 nodes located at fx‘ ¼ 10‘=80; ‘ ¼ 1; . . . ;mg. The
ðm � nÞ real matrix ½Cexp

n � is constructed using the ‘‘experimental’’ elastic modes computed in
Section 8.2 with the m-dof corresponding to the free Oy-displacements at the finite element nodes
located on the neutral fiber at fx‘ ¼ 10‘=80; ‘ ¼ 1; . . . ;mg. Such an estimation yields dM ¼ 0:29,
dD ¼ 0:30 and dK ¼ 0:68.
8.5. Prediction with the non-parametric probabilistic model of random uncertainties and

comparisons with the mean model prediction and with the ‘‘experimental’’ response of the real system

(A) Data related to the non-parametric approach: The calculations are carried out by using the
method presented in Section 7.1 with the dispersion-parameter values dM ¼ 0:29, dD ¼ 0:30 and
dK ¼ 0:68 estimated in Section 8.4.
(B) Convergence of the stochastic solution: Convergence with respect to dimension n of the

reduced model and to number ns of realizations used in the Monte Carlo numerical method, is
studied as explained in Section 7.2. Fig. 8 displays the graph of function ns 7!Convðns; nÞ defined
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by Eq. (83) for different values of n. This figure shows that a reasonable convergence is reached
for nX80 and nsX1500.
(C) Confidence region of the random frequency response functions: The confidence region of the

modulus of the frequency response function at each observation point P1;P2;P3;P4;P5 or P6
defined in Section 8.3, is calculated by using the method presented in Section 7.3. The upper and
lower envelopes (defined by Eq. (85)) delimiting the confidence region for frequency response at
observation point Pk are denoted by wþ

k ðoÞ and w�
k ðoÞ. The calculations are carried out with a

probability level Pc ¼ 0:96 and for n ¼ 80 and ns ¼ 3000. Fig. 9 displays the comparisons between
the mean model response predictions, the ‘‘experimental’’ responses of the real system and the
confidence region predictions of the stochastic system resulting from the use of the non-
parametric probabilistic approach of random uncertainties. Fig. 9 is related to a given observation
point Pk; k ¼ 1; . . . ; 6 and displays (1) the graph of function o 7! log10fjv

nðxk;oÞjg of the mean
model, (2) the graph of function o 7! log10fjv

expðxk; 0; 0;oÞjg of the ‘‘experimental’’ response of
the real system and (3) the confidence region (gray region) delimited by the upper envelope
o 7! log10fw

þ
k ðoÞg and the lower envelope o 7! log10fw

�
k ðoÞg of the stochastic system.
9. Conclusions

This paper gives a comprehensive overview of a non-parametric probabilistic approach recently
introduced for taking into account model uncertainties in structural dynamics. The foundations of
this approach are given in simple terms and all the concepts and the tools introduced in the
general theory are illustrated in using a simple example. In addition, this paper gives a new
validation point of the non-parametric theory of random uncertainties in structural dynamics and
vibration analysis.
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